
Summary of the Recent Updates of EPICS

March 15, 2013

Contents

1 Remarks 3

2 dE/dx of heavy ions 5
2.1 Creating a new SRIM data . 6

3 Minimum Energy 6
3.1 Automatic Emin . 7

4 Modifier 8
4.1 Quenching coefficients . 10
4.2 User own quenching treatment . 11
4.3 Getting the sum of energy deposit and effective energy deposit 12

5 Seeing the minimum energies and quenching coefficients 12

6 New user interface 12

7 New volume shapes 13

8 ♣Updates in v9.13 and v9.131 14

9 ♣Updates from v9.131 14
9.1 ♠: Update in Cosmos7.634 . 17
9.2 Some details . 18

9.2.1 Material of world in a sub-detector 18
9.3 Parameters summary . 19

10 ♣Recap 20
10.0.1 Case where no world is need in sub-detector 20

10.1 Contain vs Partial Contain . 20

11 Inquiry and other useful subroutines 21

12 Other updates and input parameters 28

13 Interaction models 29

14 Warnings 29

15 Light transportation 29

1

Appendices 29

A Small modifcation of the LPM formula 29

2

This manual describes the recent updates (for versions 9.10 and newer) as well as
some summary including old stuff and some obsolete parts of EPICS1.

The new stuff not included in the previous release of this manual is marked with ♠.

1 Remarks

Emin and tracking scheme In v9.10, we introduced automatic Emin setting de-
pending on the size of the detector component, special treatment of such setting
(Emin and/or quenching factor) for a specified component, etc. To stop tracking
of a particle, v9.08 used only Emin information but v9.10 could use residual range
information. Results by v9.10 have been compared with those by v9.08 to find
that there is no statistically significant difference between them (as to the energy
deposit, < 0.5%). If we use residual range information, the execution seed is
improved by about 20∼30%.

New volume-shape As to the treatment of a detector component such as described
by “pipe y”, there is some subtle difference between 9.08 or earlier and 9.10.
v9.10 introduced new shapes (octagon and honeycomb which permit “ y“ type
notation)2. This cannot be treated by v9.08 without some modification of the
source code. (The maximum character length of the shape name was changed
from 8 to 12). v9.081 is a version that can understand this new feature with a
minimum change of v9.08.

♣New volume-shapes are described in
http://cosmos.n.kanagawa-u.ac.jp/EPICSHome/NewVol.pdf

Cosmos version The following combination is recommended (rather must be used).
Cosmos7.581 is little bit different from 7.58; mis-conversion of η and Λ0 code from

Table 1: Recommended combination of Cosmos and Epics

EPICS Cosmos
9.081 7.581
9.10 7.60

♣ 9.131 7.631
♣ 9.15 7.633/♠7.634

QGSJET-II was corrected. Completely stopped anti-proton cannot annihilate in
the Jam code and this leads to infinite loop. Although very rare, π0 makes a
collision in Jam which cannot treat it. These were corrected. Cosmos7.60 could
use the “sofia” code for photo-hadron production.

Jam code The Jam code in 9.10/9.081 is the same as in older EPICS’s (Y. Nara,
Nucl. Phys. A 638, 555c (1998));

It has some problem with the treatment of spectator nucleons in heavy ion colli-
sions. Spectator nucleons in a projectile or target, emerge as independent nucleons

1Epics9.081 was kept as a minimal update from Epics9.08, since v9.10 contained rather a lot of
changes from v9.08 and we were afraid that v9.10 might have serious bugs. Now, we think we need not
go back to v9.081

2These new components and new treatment of “ y” type specification are described in
http://cosmos.n.kanagawa-u.ac.jp/EPICSHome/config.pdf

3

after collision (even for elastic collisions). That means, for example, when Fe is a
projectile, we will never get He secondaries after a collision. The current EPICS
treatment of these nucleons is that we accept all nucleons from projectile while
discard all spectator nucleons from target. (Let’s call this Jam Jam1)

There is another Jam code embedded in the PHITS code3 In this Jam, the spec-
tator problem has been solved by the PHITS author . Let’s call this Jam Jam2.
However, Jam2 inherits some defect existed in the original Jam, say, K0 cannot
be a projectile particle and other minor bugs. Such problems have been corrected
in Jam1. The implementation of Jam2 is under investigation.

♣Using Jam2 at high energies was found to be problematic (needs very long
computation time for breaking nucleus). Now we introduced a spectator break-up
scheme for Jam1. JamFragment=1 (default) in the param file ($HPARAM part)
will use this scheme. To disable this, JamFragment=0 may be given. However,
the treatment here is still far from satisfactory one (especially for elements heavier
than Fe).

Jam1 and PHITS combination In the current versions, combination of
IntModel=’"phits 2.5 "jam" 5 "dpmjet3"’
was expected to improve the proton primary case at low energies (< 200GeV).
However, the current tendency is rather opposite and contradicts earlier observa-
tion. This is under investigation.

♣It was found that the jam code gives Pt which is much smaller than other codes
(espcially for heavy targets) and cannot explain SPS beam test results for the
shower spread. So the better interaction model is probably
IntModel=’"phits" 2 "dpmjet3"’

Intel compiler vs VAX extension This is very much annoying stuff. Cosmos/EPICS
are old and use structure construct based on the so called VAX extension4. The
compiler seems to have a bug in dealing with the VAX style structure and in some
case we encounter quit strange phenomena. Suppose a code fragment like

structure /epPos/
real(8):: x, y, z

end structure

record /epPos/ p(100)
integer n
real(8):: d
...
...
p(n).x = 0.
p(n).y = d

3PHITS is a one complete package (K. Niita et al., Radiation Measurements 41, 1080 (2006)) for
particle transport (at low energies). PHITS includes several interaction models including Jam. The
interaction model specified by IntModel=’”phits”’ implies such models but does not include Jam. An
appropriate model inside PHITS is selected depending on the energy and projectile type.

4Before Fortran90, there was no structure construct formally in Fortran. However, the C-language
style structure has been used long time and it is called VAX extension. This extension is supported by
the Intel Fortran compiler but Intel seems not serious about its support and the recent compiler says
it will become obsolete in the future versions.

4

p(n).z = 0.

In some case, even if “d” is non zero, p(n).y becomes 0. This dose not happening
always, but seems to depend on other environment. So far we could not detect
the condition for such happening.

One workaround is to write
p(n) = epPos(0.d0, d, 0.d0)

Coding similar to p(n).y = d should be avoided. The users are recommended to
use epPos(..) style coding in their UserHook.

2 dE/dx of heavy ions

The ionization energy loss rate (−dE/dx; hereafter we regards dE/dx has a positive
value) of heavy ions at low energies has been treated by an effective charge method and
is fairly accurate down to a few hundred MeV/n where accelerator test experiments
are usually performed. However, at lower energies, we need a more accurate treatment.
We introduced two things:

• A better effective charge method (Pierce and Blann. Phys. Rev. 1968 vol.173,No2.
pp.390-404. With later erratum). Some modification has been done for the He
case.

• Incorporation of the SRIM data (http://www.srim.org/#SRIM). At present the
data for plastic scintillator and SciFi are available. (Both are currently regarded
as the same media).

Fe in SCIN

-d
E/

dx
 (G

eV
/g

cm
2)

Ektotal (GeV)

+ : default sampling
 (Srim+StoppingPw=1)
 No restricted; Esrim<500GeV
green line SRIM data
x : StoppingPw = -1 (no srim

no restricted)
* : StoppingPw = -1
 restricted (100keV)

0.09 GeV/n

Figure 1: dE/dx of Fe in SCIN. Green line is by SRIM. Lower dots are the restricted
energy loss rate with RecoilKeMin=100 keV. Upper one the full dE/dx. They coincide
below 0.09 GeV/n. Blue crosses (x) by StoppingPw=-1 (new effective charge method)
agree with the green line fairly well.

5

Table 2: Related parameters. D=xx means the default

variable in value description
StoppingPw epicsfile D=1 When SRIM data is available at low

energies (see SrimEmax below), use
it. At higher energies, the effective
charge method shown above is used.

2 Same as above, but the old effective
charge method is used.

-1 or -2 Even if SRIM data exists, it is not
used. The effective charge method
corresponding to 1 or 2 is used.

SrimEmax epicsfile D=0.09 (GeV/n). Above this energy, SRIM
data is not used. In the actual
simulation, this value should not
be much larger than this since the
SRIM data is for the average of the
total energy loss including high en-
ergy δ-rays from the knock-on pro-
cess. We use the restricted energy
loss and δ-rays above RecoilKeMin
are randomly generated.

MAXHEAVYCHG ZepMaxdef.h 30 In Epics/epics. Maximum charge
that can be treated by SRIM. If
changed, recompiling of all sources
may be needed.

MAX_SRIMMEDIA ZepMaxdef.h 3 In Epics/epics. Maximum number
of media for which SRIM data can
be used.

2.1 Creating a new SRIM data

If the user want to add more SRIM data to the existing data or to create new SRIM
data for a particular media, Epics/Util/SRIM may be consulted. The Readme there
will tell how to do. To see continuation of the SRIM data to the larger energy region,
testdEdx.sh in Epics/Util/Elemag/dEdx may be used.

3 Minimum Energy

Before v9.10, the minimum energy of particles (gamma, electrons...) during the particle
tracking is fixed by parameters given in epicsfile. Although it can be dependent on
the particle type, it is unique and independent of media thickness. In some case we
have a thick PWO and thin Si, or have to transport particles in a very long beam pipe
before they reach the detector. In such cases, the minimum energy may be better to
be dependent on the detector component.

In v9.10 or later,

• Automatic determination of the minimum energy is possible. The value is fixed
for each component by considering its media and thickness.

6

• When the particle energy becomes lower than the minimum, the particle tracking
is not necessarily stopped; in some case further tacking is continued as described
in Table below.

• If the value fixed by the automatic way or old way is not satisfactory, there is
a mean to fix the minimum for each particular component. See the Modifier
section.

• The procedure for the automatic determination could be changed by the user.
(Probably, such needs will be rare).

Basically, the default Eabsorb specifies that the kinetic energy of a charged particle
and photon is absorbed at the point where the particle energy becomes lower than the
predefined minimum. However, if the particle can decay or annihilate, EPICS may
follow the particle down to 0 or some lower energy.

3.1 Automatic Emin

The automatic minimum energy is calculated in the subroutine located in
Epics/prog/UserMayChange/epAutoEmin.f

If AutoEmin is non 0, this program is called to fix the minimum for a given component.
The default value, 2, specifies the following procedure.

• Use the input “minimum” thickness of the component in g/cm2(= t).

• Compute, max(min(150
√
t, 10), 150)×10−6 (GeV). That is, the value is always

between 10 and 150 keV. The value is used for photons (EminG). For electrons,
2 times of this is used and electron mass is added (EminE). Later, the range
consideration is applied.

• For AutoEmin=1, we compute max(min(100
√
t, 10), 100)×10−6 (GeV) and as-

signed to EminG and EminE.

• In both of the above cases, the value of RecoilKeMin is fixed by

max(EminG, 14Z210−9)

where Z is the effective atomic number of the media. That is, the rough K-shell
energy is considered (GeV).

• The values for KEmin is fixed to be the same as EminG

• EminH is unchanged.

If the user give a value > 2 to AutoEmin and add a program fragment in epAu-
toEmin.f, different treatments can be used. If it is 4, the range consideration will be
done same as it is 2.

7

Table 3: Related parameters

variable in value description
AutoEmin epicsfile D=2 The minimum energy is fixed automatically (see

section for Automatic Emin). If the particle
energy becomes lower than the minimum, the
residual range of the particle is computed and
compared with the distance to the boundary of
the present component. If the range is smaller
than the distance to the boundary, the energy is
assumed to be absorbed within the range.

0 The old method is used. The values (EminElec,
EminGamma, KEmin, EminH) are listed below.

1 Some smaller values of Emin than the Au-
toEmin=2 case are employed but we don’t con-
sider the range and treated as AutoEmin=0
case.

3,4 Reserved for the user. For 4, the range is con-
sidered like AutoEmin=2 case.

EminElec epicsfile D=511e-6 (GeV) By historical reason, the minimum for
electron is always in the total energy.

EminGamma epicsfile D=100e-6 (GeV) Photon minimum energy (different from
the one for light)

KEmin epicsfile D=0 If 0, the minimum kinetic energy for electron is
used. This is for the minimum kinetic energy
for other particles than electron and neutron

EminH epicsfile D=0 If 0, 20 MeV is used for neutron minimum ki-
netic energy

RecoilKeMin epicsfle D=0 If 0, EminGamma is used. The restricted energy
loss is computed below this energy and δ-rays
are randomly generated above this energy.

Eabsorb epicsfile D=14 The bit pattern of Eabsorb determines how to
treat energy of a particle when its energy be-
comes lower than the predefined minimum. For
details, see epicsfile in UserHook/Template.
See also below.

4 Modifier

The user may need to specify some specific minimum energy or non default quenching
effect coefficients for some components5. In such cases, the user may give a number in
the modifier digit for that component in the config file (see Fig.). The user must
prepare a ModifyFile in which the user give that number followed by necessary entries

5The quenching coefficients are normally given in the media file and used as the default. If a modifier
described here is to specify a change of the coefficients, the quenching treatment is applied even if there
is no default specification.

8

Config file

1 ...
...
4 box scin 1 2 0 3 / 0 0 + a b c
5 ...

ModifyFile
This is to show the format of ModifyFile
any comment before ---------
Valid data must start from the 2nd column
(same as epicsfile/sepicsfile) and ends with /
Others are regarded as comment.

index #
 1 / SCIN. any comment here
 # Quench a b T /
 quenching factor is (1-b)/(1 + (1-b)*a*|dE/dx|) + b
 Quench 7.0 0.30 T /
 Emin 40.d-6 551d-6 150d-6 /

 3 / SCIN comp.# 5
 Emin 10d-6 541d-6 10.d-6 /

 Quench 4.5 0.09 4.0 L /

 2 / for Si
 Emin 10d-6 521d-6 10.d-6 20d-6 0.1/
 EminG EminE RecoilE KEmin EminH

these two may be given

modify digit

don’t worry the order

Log type quench formula

Figure 2: Modifier and ModifyFile

like in Fig. Note that, although we say as if ModifyFile were a file, ModifyFile itself
is not the file name but a variable to contain a path to a file in which modifications are
described,
If the modifier field is absent or 0, no modifier is assumed. The modifier number need
not be consecutive but it’s better to keep it as small as possible to save the memory
(must be < 1015 − 1). The value for the ModifyFile must be given in epicsfile. The
default of ModifyFile is ’ ’ so that no modifier is assumed. The format of ModifyFile
is similar to epicsfile.

The current possible entry is Quench and Emin. In some case, one may need to
change the medium density for the same medium (say, for Air), so Density could be
an entry candidate. By historical reason, changing density is possible by the notation:

2 bos Air ...　
3 box Air*1.08 ..
4 box Air*0.90

in the config file. Here, 1.08 means 1.08 times higher density than the default given
in the media file.

9

Table 4: Related parameters

variable in value description
ModifyFile epicsfile D=’ ’ If the modifier digit is used in the config file,

a file name here is consulted. However, If this
is “blank”, all modifiers are neglected. The file
should contain the number given in the modi-
fier field and some of the variables shown below.
If a modifier number is > the max number in
ModifyFile, error stop will happen.

Quench ModifyFile Coefficients must be given for Tarlè, Birks or
Log forrmula (see section for Quenching) . If
this is missing for a modifier number, the same
action is taken as if the modifier were absent.

Emin ModifyFile EminG, EminE, RecoilE must be given. KEmin
and EminH may or may not follow them. If
last two are not given, the same procedure as
AutoEmin = 1 case is used. If this is missing for
a modifier number, the same action is taken as
if the modifier were absent.

4.1 Quenching coefficients

It is assumed that the amount of scintillation light emitted by a heavy ion in a short

distance, ∆x, is not proportional to the energy loss (deposit), ∆E =
dE

dx
∆x, in the

scintillator but is proportional to Cf∆E where Cf (≤ 1) is a dE/dx dependent constant.

Birks Before v9.08, the quenching effect is managed by the Birks formula + some
corrections. The original Birks formula gives

Cf =
1

1 + adE
dx

(1)

where a is the Birks coefficient. The additional corrections need two more con-
stants, b and c. So, for example, the basic media file (Epics/Data/BaseM/SCIN)
and media file (Epics/Data/Media/SCIN)6 contains lines like

Elem rho(g/cm^3) Gas/Solid(1/0) refl.index Birks c
2 1.032 0 1.581 13 9.6 0.5714

where the last three numbers are the coefficients, a, b, c. However, the correction
terms using b and c do not work well and only a has been used in the original
formula to get Cf . In spite of this fact we will keep 3 numbers for the Birks case;
the last two may be any numbers.

Now we may put “B” to express explicitly that these are for the Birks formula:

6The BaseM file is used only when making the Media file. The user may change the quenching
coefficients in the media file after creating it. The data in the BaseM file need not be changed but it
will be better to keep the same value as the Media file.

10

Elem rho(g/cm^3) Gas/Solid(1/0) refl.index Birks c
2 1.032 0 1.581 13 9.6 0.5714 B

The unit of a is g/cm2/GeV.

Talré A better formula by Talré is now usable (G. Tarlé, S.P . Ahlen and B.G .
Cartwright, Astrophys . J. 230 (1979) 607):

Cf =
1 − b

1 + (1 − b)adE
dx

+ b (2)

and the (basic) media file format is (e.g., for a = 8 and b = 0.35)

Elem rho(g/cm^3) Gas/Solid(1/0) refl.index Talre c
2 1.032 0 1.581 8 0.35 T

We need two coefficients, a, b and “T”. The unit of a is the same as the Birks
case, i.e, g/cm2/GeV and b is unitless.

Log Another purely empirical formula is a “Log” type7 which needs three coefficients
a, b and c:

z = a
dE

dx
+ 1 (3)

Cf = z−b log(cz) (4)

The (basic) media file format would be

Elem rho(g/cm^3) Gas/Solid(1/0) refl.index Log quench
2 1.032 0 1.581 4.6 0.09 5.1 L

The three coefficients, a, b, c, must be followed by “L”. The unit of a is as before
(g/cm2/GeV) and b and c are unitless.

So far the format is for the (basic) media file and the values there are used as default
for that medium. As mentioned earlier, the modifier digit and ModifyFile can change
these defaults. The format in the ModifyFile is one of

Quench a b c B /
Quench a b T /
Quench a b c L /

Q... must start from the 2nd column.

4.2 User own quenching treatment

If the user wants to use another quenching formula, one solution is to do every thing
in userde of ephook.f. The coding will look like

7Coefficient treatment in v9.08 is different from v9.10 or later so the “Log” formula should not be
used in v9.08.

11

real(8):: dedx, Cf
....
if(aTrack.p.charge > 1) then
call epqElossRate(dedx) ! get dE/dx (GeV/(g/cm2)
! get Cf from dedx etc
! get effective dE by Cf*Move.dE
! use it instead of Move.dEeff

endif

Caution: If info given to userde is 1, the particle is dying, or already dead because
its energy is < minimum from the birth. In the latter case, unless charge is > 1, dedx
is undefined. In some case, even charge 0 particle (e.g, very low energy photons) may
come there.

4.3 Getting the sum of energy deposit and effective energy deposit

The user can use (in ue1ev of ephook.f)
call epqEloss(i, dEt, dEeff)

to get true energy deposit (real(4)::dEt) and effective deposit (real(4)::dEeff) for
a component number i.

Caution: dEeff may be taken to be proportional to emitted light intensity. However,
actual light reaching to sensor could be dependent on the emission position. Such a
factor is not taken into account in this dEeff. The user must do such business in userde
using Move.dEeff and position information, etc

5 Seeing the minimum energies and quenching coefficients

To have a look at the minimum energies and quenching coefficients set by ModifyFile
or AutoEmin together with the associated component, the user may go to Epics/Util
and issue

• ./testCnf4.sh for Emin

• ./testCnf5.sh for quench coef.

The usage will be shown by the command.

6 New user interface

In some applications, the user may want to know information of particle interactions
(what kind of interaction, where it happened etc). This type of interface is available
in Cosmos but not in EPICS. If we add such one, all user must modify the existing
ephook.f. This fact delayed implementation of such interface. Now, from v9.10, the
user could use such interface8 while those who don’t need such one can use old programs
without paying attention to, or without being aware of, the new interface at all.

How to do if the user wants to use the interface ?

1. Edit Epics/epics/Zepcondc.h and change the last line to read #define INTINFO

8If the user needs to know only the first interaction of the incident particle, this interface is not
needed. See section 11.

12

2. make clean;make in Epics as usual9. This may be done once for all unless the
user resets the line to #undef INTINFO.

3. In the user’s application directory, say, Epics/UserHook/myApps or
in Epics/UserHook/xxx/myApps (see 7. below), issue manageIntInfo.sh.

This command dose two things

• copies Epics/UserHook/epUI.f to the current directory.

• after #include "../main.f" or #include "../../main.f"
in the ephook.f, adds the next lines

#include "Zepcondc.h"
#if defined (INTINFO)
#include "epUI.f"
#endif

4. If the user dose not do anything more, and make clean;make, then the application
will run as if the user did not do manageIntInfo.sh. The overhead by introducing
epUI.f is completely negligible.

5. If the user wants to do something when some particle interacts, the user must
edit epUI.f.

• The usage is explained in the epUI.f

• Important: Suppose a photon interacts and this program unit is called, then
if the user dose not give 0 to info, this program will not be called for
later photon interactions until the next event simulation starts. For other
particles, the same is true.

• The position information is the one at the local coordinate of the current
component.

6. For the applications in UserHook/ supplied by v9.09, manageIntInfo.sh has been
done. If the user dose this again, nothing will happen.

7. If the user’s application is located in a different directory structure than shown
above, the equivalent two things as above must be done by the user.

The epGUI subroutine is included in the epUI.f. This is prepared to cope with
future demand of new interfaces.

7 New volume shapes

♣See a separate manual for octagon, sqTccl, fpolygon, torus, ciecone; some are not
new at all.
http://cosmos.n.kanagawa-u.ac.jp/EPICSHome/NewVol.pdf

9This should be always ok, but if the user has already made the library before changing Zepcondc.h,
the safest way is to delete the library in Epics/lib/.../ once and remake the library.

13

8 ♣Updates in v9.13 and v9.131

Rather updates in Cosmos version 7.62.

1. h-A cross-sections.

These are normalized to the PDG values at 200 GeV. For heavy material (A>170),
there is no change (< 0.1%). For A<170, max difference is 2.5 % for light elements
such as Be,C,N except for A=16 for which 5.5 % difference is seen. Note: PDG
values have been changing with time.

2. A-A cross-sections.

A parameter “AAXsec” is introduced, which may be given in the param file
($HPARAM part). AAXsec=0 (default) is to use cross-sections having been used
so far. AAXsec=1 will use the ones normalized to Shen’s cross-section (Nuclear
Physics A491 (1989) 130-146) at 5 GeV/n. Normally, AAXsec=1 gives little bit
larger cross-sections than AAXsec=0.

If the user wants to move user’s routines placed in a directory (say, xxxx) under User-
Hook, it may be moved to any directory and the hookIsOutSide.sh command may
be issued in xxxx to accomplishe necessary changes.

If hookIsOutSide.sh has been executed earlier than manageIntInfo.sh, the latter
does not work well. This was corrected.

9 ♣Updates from v9.131

There is no update which might affect the results more than a % level in usual applica-
tions. Many are refinement of utility funcitons.

1. So far Seltzer & Berger’s bremsstralung cross-section table has been used from
Ee = 5 keV to 100 MeV (in eleectron kinetic energy)10.

The upper limit is now 10 GeV (which is the max table value). For heavy mate-
rials, the cross-section difference over 100 MeV is small, while for light materials
the change is not negligible. Therefore, for example, the E-M cascade only in He
gas might be affected (Fig.1).

v
dσ dv

/r
.l

v = Eg/Ee

Ee=100 MeV in He gas

S & B

Tsai

v
dσ dv

/r
.l

v = Eg/Ee

Ee=100 MeV in Pb

S & B

Tsai

Figure 3: Seltzer & Berger’s brems cross-section vs Tsai’s one. Left for He gas. Right
for Pb. Red line for S & B and blue one for Tsai. Electron energy is 100 MeV.

10In the higher energy partial screening region, Tsai’s analytical formula has been employed.

14

A epicsfile parameter “EpartialSC” (0.1 ∼10 GeV; D=10) controls up to which
energy the S & B’s table is used in actual sampling.

2. There are basically three different bremsstralung cross-sections: Seltzer & Berger’s
table, Tsai’s partial screening formula, and Tsai’s complete screening formula 11.
(Besides this, the LPM effect could be imposed). They are used at different
enegies but there are small gaps at the connection points.

Now the differenctial cross-sections are normalized at v = Eγ/Ee = 0.75. When
HowNormBrems=-1, the normalization is performed in such a way that the com-
plete screening cross-section is correct so that Tsai’s partial screening cross-section
is normalized to that one at some energy where the cross-sections are switched,
and then Seltzer & Berger’s one is normalized to the normalized partial screening
cross-section at 10 GeV. When HowNormBrems=1, S & B is treated as the correct
one and the procedure goes inverse way. if HowNormBrems=0, no normalization
is performed. The deviation of the normalization factor from 1.0 is normally less
than 1 %.

3. The LPM effect so far has been considered only in the complete screening region
(above few tens GeV in heavy media). This is enough for many applications
where energy deposit is measured.

However, the effect itself is active at lower energies (e.g, Anthony et al., Phys.
Rev. Lett. Vol.75, No.10, 1995).

Now the effect can be imposed assuming Migdal’s formula is applicable (see Ap-
pendix A) down to Ee ∼100 MeV in the case of dense media where the supression

starts visible for the photon energy of ∼10 keV in log v scale graphs of v
dσ

dv
.

Epicsfile parameters: Besides old “LPMeffect” (t/f. D=t), “Flpm” (>= 1.
D=1) is introduced. The minimum energy where the LPM is applied is fixed
by FlpmElpm where Elpm = max(0.1, 0.3X0/0.561) GeV and X0 is the radiation
length of the medium in cm12.

4. The interaction model, “dpmjet3”, needs pre-calculated Glanuber data and they
are stored in Data/Media/. So far they could be used for projectiles up to Fe.

Now the default maximum heavy projectile is Pb.

5. Due to these changes mentioned above, the files in Data/Media/ are now com-
pletely different from older ones. If one has media files not listed in Data/Media,
they must be recreated.

6. Media file creation: Basically the same as old days.

• Create a base file in Data/BaseM. In the case of format 2, information for
the last line may be obtained by visiting:
http://pdg.lbl.gov/2012/AtomicNuclearProperties/index.html

and searching a TEXT file. If the medium is not found there, use format 1
without giving the last line. If only some parts are unknown, fill them by
-100.

• Go to Util/Elemag/BremsPair.

11Other formulas are also implementable, but currently we don’t use them
12Don’t confuse Elpm with the one in PDB

15

• Issue ./CreateTab

7. Preparing Glauber files.

• In any place, issue,
iniGlauber
There is an option for the maximum projectile mass (Fe or Pb). Normally, Pb
(default) should be selected. If the media have a number of heavy elements,
default case takes very much longer time than the Fe case.

• Two files with .GLB and .inp should be moved to Data/Media/.

8. Drawing Brems/Pair functions and/or testing sampling.

• Go to Util/Elemag/BremPair 13. 　　　
• Use showBremFunc.sh for drawing brems functions. 　　　
• Use showPairFunc.sh for drawing paircreation functions. 　　　
• Use testBremSamp.sh for brems sampling test. 　　　
• Use testPairSamp.sh for brems sampling test.

9. As new media, Al2024,Al7075,Steel and Au are added.

10. The ingredients of GSO were updated.

11. It’s found that PHITS cannot accept K± besides K0. This was corrected. They
are rather rare at low energies, and hence the effect is very limited.

12. In the PHITS model, knock-on nucleons from a heavy nucleus are almost neu-
trons. It is said that nucleons from the evaporation mechanism are almost neu-
trons but it’s not clear that the same is true for knock-on nucleons.

If the number of protons among knock-on nucleons is roughly proportional to the
parent Z/A, there might be some effect when low energy neutron hits a heavy
nucleus.

To be able to see the effect, a parameter “DoNPadjust” is introduced. It is to be
given in the param file($HPARAM part). DoNPadjust=0 (default) is for the PHITS
original treatment, DoNPadjust=1 will try to adjust the p/(p+n) ratio be Z/A.

13. Config file management. So far many of tasks related to a config file must be
performed after going to Util or Util/Geomview. This is inconvenient and now
the following commands may be issued in the directory where your target config
file is located (the config file may include sub-detectors placed in other directories):

usenewvol, expandconfig, mkdrawconfig, drawconfig, dispconfigbygeomv, disp-
tracebygeomv

The list of the commands shown above may be seen by issuing:

configMenu

14. When the environmental variable are set both for Cosmos and Epics, the FC
command in site.config may not work well in some case. This was corrected.

15. In some Linux system, #!/bin/bash and #!/bin/sh in Scrpt/cppFCPCLinuxIFC64
are not compatible. They are now unified to the former one.

13In the directory, there are some obsolete stuffs.

16

16. dE/dx and target atomic electron brems.

In the dE/dx calculation of muons, the brems effect by target atomic electrons
has been included. Now the same effect can be considered for pi,K,p, too.

At present we cannot treat it as a stocastic process but only average < dE/dx >
is known(D. E. GROOM et al., Muon Stopping Power and Range Atomic Data
and Nuclear Data Tables, Vol. 76, No. 2, July 2001). It is dangerous to include
the average when the media is not thick enough so that the process can happen
many times there.

So the current resolution is to include it when the material is very thick (say, 1m
Fe; this means that the main purpose is to see the muon energy after traversing
such a thick medium. In the case of hadrons, they will make hadronic interactions
in such a thick medium and considering the effect for them would be almost no
meaning.

The relevant parameter is “TargetElecBrems” in the epicsfile. let’s express its
last bits as xyz (z is lsb; bit position 0): z is for muon, y for pi,k,p. if each bit
and x are on, the effect over 5

√
Mµ/M GeV is considered (M is the mass of µ,

pi,k or p). The default value of the parameter is 0. For thick media, the value of
7 (bit 111) may be given. The effect for 100 GeV muons is order of 3 %.

If x is off, the effect becomes negligible; it will have meaning when stochastic
treatment becomes possible.

17. Two virtual media have been introduced. One is “world” and the other “sp2”.
(See later).

18. Using “ ” in the su-bdetector name is now prohibited.

9.1 ♠: Update in Cosmos7.634

1. At high energies, dpmjet3 produces rare particles such as D+
s ; they have been

simply neglected since their rareness. From 7.634, their decay can be considerd.
The relevant parameter is dpmRareDecay14.

Default 1 is to treat some of them as older versions: decay of D0,±, Σ0,±, Ξ0,±,
Λc, Ω− is considered (for Λc, only the channel containing muon; 2%) while their
collision is treated as a Kaon or proton. Others are forced to decay within dpmjet3
(in older versions, others were neglected).

0 is to neglect all of such particles.

2 is to force all of such particles decay within dpmjet3.

3 is to treat them completely as the older versions.

No effect will be seen in normal applications.

The pdg M.C (KF) codes subject to this treatment are:

411(D+), 421(D0), 431(D+
s), 441(ηc(1S)), 443(J/ψ(1S)), 4112(Σ0

c), 4122(Λ+
c), 4132(Ξ0

c),
4212(Σ+

c), 4222(Σ++
c), 4232(Ξ+

c), 3222(Σ+), 3212(Σ0), 3322(Ξ0), 3312(Ξ−), 3334(Ω−)

14It is impossible (?) to force those particles to decay by giving data in dpmjet.inp. So a subroutine
“cdpmRareDecay” is added in Cosmos/Particle/Event/Interface/cdpmjet.f

17

9.2 Some details

9.2.1 Material of world in a sub-detector

“sp” has been used normally for the material of “world” in sub-detectors. If the world
is tight (i.e no gap between the world and contained components), “sp” is good since
it is not drawn in default. If the world is not tight, the gap space is treated as ’sp’
(almost vacuum). This is good for space experiment simulations. For the ground base
experiment, it may be better to use “Air” instead of “sp”, though the effect is normally
negligible. To replace all “sp” with “Air” is bother.

If we use a new virtual material “world” in stead of “sp” for sub-detector’s world,
all of them are replaced by the world material of the last world (So if the last one is
“H2O”, all of sub-detector “world” will become “H2O”).

This applies when a sub-detector is simply put in another sub-detector or in the
final detector definition, and must be distinguished from the case where a sub-detector
is contained by another component explicitly, e.g,

#subd abc
1 ...
2 ...
...
n box_w W ...
#end abc

#subd xyz
1 abc ...
2 box W / 1
3 abc ...
4 box W / 3
...
n box_w world ...
#end xyz

In this case, it is natural that, if the world of ’abc’ is not tight, it is natural to assume
that the gap in ’abc’ is filled with the medium of the container (W). This has been
realized by putting W as the world material of ’abc’. However, if there is another
container and its material is Pb, we cannot use ’abc’.

This is inconvenient. If the world is specified as “sp” in this case, the current system
will automatically replace it by the container’s material. From the point of simulation,
this is ok irrespectively of the gap existence.

However, if we display the detector, the gap is drawn even if the gap thickness is
0 (so the inside cannot be seen in default). This is another inconvenience. Therefore,
if we are sure that there is no gap, we may use “sp2” in stead of “sp”; then sp2 is not
replaced by container’s material and eventually replaced by “sp”. If we are not sure
about the gap existence, it’s safe to use “sp”.

Recap:
There is clear difference between the cases where a sub-detector is simply put in

another sub-detector (or final detector definition) and where a sub-detector is con-
tained by another component. A sub-detector cannot contain another sub-detector or
component (instead, simply put them inside).

18

9.3 Parameters summary

Hadronic interactions are managed by Cosmos and hence parameters related them are
for Cosmos and better to be placed in the param file. However, some were put in the
epicsfile. This is rather confusing both for the user and programing.

Now they are removed from the epicsfile; if they are put in the epicsfile, the program
will stop with appropriate messages.

Table 5: Recent new parameters

variable to be given in value description
JamXs epicsfile not usable now
JamXs param ($HPARAM) For Jam interaction model.

D=0 only ielastic events are accepted.
1 elastic events are also accepted for non heavy

ion projectile.
JamFragment param($HPARAM) 0 all spectators are nucleons

D=1 heavy fragments may be formed from spectators
PhitXs epicsfile not usable now. At present we don’t use it.
IncGp epicsfile not usable now, instead use next.

HowPhotP param($HPARAM) For photo-hadron production
0 no photo-hadron production is considered.
1 use Sofia model (A.Mücke, et al. Comp. Phys.

Comm. 124, 290-314) (target is always proton)
2 exp. data at< 2.5GeV. Sofia at > 2.5 GeV
3 Sofia at < 2.5 GeV. At > 2.5 GeV, examine

current active model is able to use vector meson
(ρ, ω, φ), pi0, or pi± as projectile, in this order,
and use one of them as projectile.

D=4 Exp. data at < 2.5 GeV. At > 2.5 GeV, the
same as in 3.

AAXsec param($HPARAM) For AA collision cross-section.
D=0 same as older versions

1 cross-section is normalized to Shen’s one at 5
GeV/n. 1 gives normally larger σ than 0

♠dpmRareDecay param($HPARAM) Control rare partilcs in dpmjet3
D=1 Those of which decay were treated in older ver-

sions (D0,±, etc) are treated in the same manner.
Their collsion is treated as a proton or Kaon.
Others are forced to decay in dpmjet3.

0 Neglect all such particles
2 Force all such particles to decay in dpmjet3
3 Treat them as in the older vesions.

Flpm epicsfile D=1 LPM effect is applied when electron en-
ergy is >= Flpm*Elpm where Elpm=max(0.1,
0.3X0/0.561) GeV, X0 being r.l in cm. Flpm
must be >=1.0

EpartialSC epicsfile D=10 Seltzer & Bergers’ numerical brems table is used
up to this electron kinetic energy (GeV). must
be 1∼10.

19

variable to be given in value description
HowNormBrems epicsfile how to normallzie brems cross-sections.

D= −1 complete screening cross-section is taken to be
correct.

1 Seltzer & Berger’s cross-section is taken to be
correct.

0 no normalization is performed.
DoNPadjust parm D= 0 Use PHITS default for spectator n/p from target

nucleus
1 Adjust n/p ratio so that it is close to target A,Z

ratio.
TargetElecBrems epicsfile how to treat dE/dx due to target electron’s

brems effect. should be used if the medium is
thick enough. The effect becomes visible when
the particle energy > 5

√
Mµ/M GeV, where M

is the mass of mu, pi, K, or p.
D=0 no effect is considered
bit 0 If this bit on, effect is considered for muons
bit 1 This bit is for pi,K, p
bit 2 If this bit is off, only the loss corresponding to

restricted energy loss is considered and normally
negligible. If the bit is on, average total dE/dx
is considered.

10 ♣Recap

10.0.1 Case where no world is need in sub-detector

In the next example,
#subd abc
1 ...
2 ...
3 ...
4 box .. / / 1 2 3
#end abc

the last component (4) contains all other components (1,2,3) and can play a role of a
world, and hence world is not needed.

10.1 Contain vs Partial Contain

In Fig. 4 left. ’c’ is contained by both ’a’ and ’b’; some part running off the edge of
’b’ is contained by ’a’. By the format with ’NG’, ’c’ is not recognized by particle ’y’,
and resembles to the ’partial contain’ shown in the right Fig. However, for particle ’x’,
the running off part is recognized so in this respect, it is not a ’partial contain’. The
correct format is the one with ’OK’.

In the ’partial contain’ case in the right figure, ’c’ is partially contained by ’b’ so
that the part overflowed from ’b’ is treated as non exisistent; the format ’a /c’ must
not be used. ’c’ contains ’d’ and if some part of ’d’ overflows from ’b’, it is regarded

20

a

b

c

a

b

c d

a / b
b / c

x

y

a / b c
b / c

a / b
b / -c
c / d

NG OK

Figure 4: contain and partial contain

as non existent, too. At present, however, non existent part is drawn by the present
system.

21

11 Inquiry and other useful subroutines

Here we list inquiry subroutines which may be needed by the user, irrespectively of old
or new.

Table 6: Inquiry subroutines

subroutine name description
epqversion Get version number of Cosmos and EPICS.

Usage:
character(8)::cosv ! Comos version (say 7.99)
character(8)::epiv ! EPICS version
call epqversion(cosv, epiv)

Caution: Environmental variable COSMOSTOP and EPIC-
STOP must have relevant values.

epqncp Get the total number of components.
Usage:
integer::ncomp
call epqncp(ncomp)

epqevn Get current event number
Usage:
integer::eventn
call epqevn(eventn)

The event number will be updated after ue1ev is called.
epqinc Get the incident particle track information

Usage:
#include "ZepTrack.h"
record/eTrack/ aTrack
call epqinc(aTrack)

aTrack.p.code etc are explained in userde or userbd. E.g, the
component number of the incident track is aTrack.cn and its
position is aTrack.pos (local coordinate). To get the world
coordinate, the user must use epl2w (see Table 7)
Caution: If multiple particles are incident, only the first one
is obtained.

epqFirstI Get the first interaction point of the incident particle
Usage:
#include "ZepPos.h"

This is not needed if ZepTrack.h is used for epqinc in the
same subroutine.

record/epPos/firstpos
call epqFirstI(firstpos)

firstpos.x, firstpos.y, firstpos.z are the interaction point in the
world coordinate.
Caution: Except for the electron, the knock-on and elastic col-
lision are not regarded as interaction. A large negative value
(-1000000.0) of firstpos indicates no interaction happened.

22

subroutine name description
epqFirstM Get the media information in which the incident made the first

interaction.
Usage:
#include "Zmedia.h"
record /epmedia/ firstM
call epqFirstM(firstM)

Some of the ingredients:
firstM.A: real(8) ! Average mass number of the media.
firstM.Z: real(8) ! Average charge of the media.
firstM.name: character(8) ! media name.
firstM.colElem: integer

The element # within the media at which the first collision
took place. For e/γ/µ, this will be 0 if the number of elements
in the media is> 1, and the variables below are undefined.

firstM.colA: integer
Mass number of the nucleus at which the collision took place.

firstM.colZ: integer
Charge number of the nucleus at which the collision took
place.

firatM.colXs: real(8)
The inelastic cross-section (mb) of the target.

epqFirstP Get process name of the first interaction.
Usage:
character(8):: proc
call epqFirstP(proc)

If no interaction happened, proc will be ’ ’. Hadronic collision
is ’coll’, brems ’brem’, pair creation ’pair’, Compton ’comp’;
more details are seen in Epics/UserHook/epUI.f.

epqCn2Media Get media information of a given component number.
Usage:
#include "Zmedia.h"
integer:: compn ! give some number
record /epmedia/ mediax
compn= ...
call epqCn2Media(compn, mediax)

If compn is wrong, stop will happen. The media name is in
mediax.name (see, epqmat), mediax.Z the average charge of
the media, etc.

epqmat Get media name of a given component number.
Usage:
integer:: compn ! give some number
character(8)::name ! If compn is wrong, stop will happen.
compn= ...
call epqmat(compn, mat)

Output mat will be such as Pb, SCIN etc.

23

subroutine name description
epqstruc Get component structure (box etc) of a given component number.

Usage:
integer:: compn ! give some number
character(12)::struc ! If compn is wrong, stop will happen.
compn= ...
call epqstruc(compn, struc)

Output struc will be such as box, ciecone etc. If the length
is shorter than actual one, the tail part will be lost.

epqSubdName Get sub-detector name to which a given component number be-
longs.
Usage:
integer::compn ! give some number
character(16)::name

If compn dose not belong to a sub-detector, name will be ’ ’ .
compn= ...
call epqSubdName(compn, name)

epqmatrhoc Get media name (e.g, Air*1.03) of a given component number.
Usage:
integer:: compn ! give some number
character(20)::name

Output will be Air*1.0032 etc. Air is equivalent to Air*1.
If compn is wrong, stop will happen.

real(4)::rhoc ! output.
The relative density of the component to the default.

integer::lc ! output. Length of the name content.
compn= ...
call epqmatrhoc(compn, name, lc, rhoc)

epqCount Get digit information for calling userbd and userde of a given
component number.
Usage:
integer::compn ! give a component number
integer::countio ! digit for userbd
integer::countde ! digit for userde
compn= ...
call epqCount(compn, countio, countde)

Wrong compn will result in a stop. Suppose a component
description line like
3 box Pb c de /
here “c” is the digit used to call userbd and “de” the one used
to call userde (and routines for light transport). We call the
“c” part countIO (since it is to specify whether userbd is
to be called when a particle enters In or goes Out of a com-
ponent), and the “de“ part countDE (since it is to specify
whether userde is to be called when a particle Deposits En-
ergy in a component).

24

subroutine name description
epLightUnpack

CountDE Decompose countDE (see above). Decomposition may be needed
when it contains information for light generation and transport.
integer(2)::info ! NOT integer
integer::d ! digit for energy deposit count
integer::mn ! digit for flle for Light or sensor
integer::B ! digit for light generation/transport
info = countde ! convert to 2 byte integer
call epLightUnpackCountDE(info, d, mn, B)

The input info is decomposed into d, mn, B. Details will be
explained in the Light Transport section.

epqvolatr Get the volume attribute of a given component number.
Usage:
integer::compn ! give a component number
integer::na ! Output. number of attributes obtained.
real(8)::vol(x) ! Output.

x must be ≥ na which is dependent on the volume (say, for
box 3, cyl 2, octagon 4 ...).

compn= ...
call epqvolatr(n, na, vol)

Example: for a box, vol(1), vol(2), vo(3) will be a,b,c of the
canonical form. If compn is wrong , stop will happen.

epqcmpdircos Get the direction cosines of a given component number.
Usage:
integer::compn ! give a component number
real(8)::dir(9) ! Output.
compn= ...
call epqcmpdircos(compn, dir)

The direction cosines of the component, showing how the
canonical form is rotated. Suppose a canonical box surround-
ing the component. The rotation is expressed by the direction
cosines of rotated canonical box’s a, b, c: dir(1:3) are for
a, dir(4:6) for b and dir(7:9) for c. If the component is
not rotated dir(1:9) =(1,0,0, 0,1,0, 0,0,1). If compn is
wrong , stop will happen.

epqOrig Get the origin coordinate value of a given component number.
Usage:
#include "ZepPos.h"
record /epPos/ orgin
integer::compn ! give a component number
compn= ...
call epqorg(compn, origin)

The value of orign.x, orign.y, orign.z is the origin of the
component in the world coordinate. That is, the origin of the
component in its canonical form is shifted by this amount. If
compn is wrong , stop will hapen.

25

subroutine name description
epqElossRate Get dE/dx of the current particle

Usage:
real(8)::dedx ! GeV/(g/cm2)
call epqElossRate(dedx)

To be used in userde. See caution in 4.2.

Table 7: Other subroutines

subroutine name description
epl2w Convert position in the local coordinate into the world coordinate

Usage:
#include "ZepPos.h"
integer::cn ! input. component number
record /epPos/ posl ! input.

The position posl in the local coordinate of the component
specified by the component number cn.

record /epPos/ posw ! output. world coordinate position
call epl2w(cn, posl, posw)

epw2l Inverse of epl2w
Usage:
#include "ZepPos.h"
integer::cn ! input. component number
record /epPos/ posw ! input. world coordinate position
record /epPos/ posl ! output. local coordinate position
call epw2l(cn, posw, posl)

epl2wd Convert 3 direction cosines in the local coordinate into the world
coordinate
Usage:
#include "ZepDirec.h"
integer::cn ! input. component number
record /epDirec/ dirl ! input.

Direction cosines dirl in the local coordinate of the compo-
nent specified by the component number cn. dirl=(dirl.x,
dirl.y, dirl.z).

record /epDirec/ dirw ! output. world coord. dir. cos.
call epl2wd(cn, dirl, dirw)

epw2ld Inverse of epl2wd.
Usage:
#include "ZepDirec.h"
integer::cn ! input. component number
record /epDirec/ dirw ! input.

Direction cosines dirw in the world coordinate.
record /epDirec/ dirl ! output. local coord. dir. cos.
call epw2ld(cn, dirw, dirl)

26

subroutine name description
cgetfname Convert special characters in a string to create a new string.

Usage:
character(x):: fin ! input
character(y):: fout ! output
fin=’...’
call cgetfname(fin, fout) !

x,y must be some number.
All of % #1 #2 # @ $ in fin are treated as follows.

1) #1 is replaced by the initial seed of the random number (1st
one of the two).

2) #2 is replaced by the initial seed of the random number (2nd
one of the two).

3) # (not followed by 1 nor 2) is replaced by the unix process
number.

4) % is replaced by YYMMDDHHMMSS (year month day hour
minut second of the time).

5) @ is replaced by the hostname (dropping domain name, if any).
6) $ assumes it is followed by an environmental variable, and is

replaced by its value. Three types can be recognizable: for
instance, $USER (not followed by any character), $USER/ (fol-
lowed by /) $(USER) (always ok). In either case, it may be
preceded by any character. (This one is usable from Cos-
mos7.59).

copenf Open an existing sequential ascii file. Special characters in the file
name is treated by cgetfname.
Usage:
integer::ionum ! input
integer::icon ! output
call copenf(ionum, filepath, icon)

where filepath is a character string defined by, say, charac-
ter(60)::filepath and contains a string showing the path to an
existing file. ionum is the logical file unit number. icon =0:
ok iocn !=0: could not be opened.

copenfw Open an sequential ascii file for writing. It may not exist. Special
character treatment is the same as copenf.
Usage:
integer::ionum ! input
integer::icon ! output
call copenfw(ionum, filepath, icon) ! icon =0: ok. else ng

rndc Uniform random number in (0,1).
Usage:
real(8)::u ! output (0 < u < 1.0)
call rndc(u) !

The same random number generator as used in Cos-
mos/EPICS. 0 and 1.0 are excluded.
There are two other generators and the third one is not used
in Cosmos/EPICS. See for details in Cosmos/KKlib/rnd.f

27

subroutine name description
Others Other random number generators are available. See the following:

(Those in Cosmos/KKlib)
kgauss.f : Gaussian random number.
kbetar.f : Random numbers with density of the beta function
kbinom.f: Binomial random number.
kcosn.f: cos and sin of uniform random number in (0, 2π).
knbino.f: Negative binomial random number.
kpoisn.f Poisson random number.
kampLin.f Random variable with density (a+ bx)dx
ksampPEang.f: Random variable with density (1−x2)/(a−x)4dx.

Related to electron angle at photo-electric effect.
ksampPw.f: Random variable from a function consisting of many

power functions.
ksampRSA.f: Random sampling of cos θ from (1 + cos2 θ)d cos θ
ksbwig.f: Random sampling from the Breight-Wigner distribution.
ksgamd.f: Sampling from the gamma distribution,

(x/a)s exp(−x/a)/Γ(s+ 1)d(x/a)
ksplandau.f: Sampling from a psuedo-Landu distribution:

exp(−(y + exp(−y))/2)dy where y = (x− b)/c.
csampAF.f90: (in Cosmos/Module). Sampling from an arbitrary

function specified by a numerical table. (see also ksampAF.f
in Cosmos/KKlib/)

Those in Epics/prog/KKlib:
ksbeta.f: ksmpintbetaf: similar to kbetar.f
ksx2.f: Random sampling from the χ2 distribution.

12 Other updates and input parameters

• Use of environmenal variables. As described in Table 7, for the file name,
we can use environmental variables.

• Multiple scattering treatment. The parameter Molier in the epicsfile now
takes integer values rather than “t” or “f”, although the user can still use t or f;
they are mapped to 0 or 1 by

f→ 0: This specifies the Gaussian multiple scattering.

t→ 1: This specifies the Molière multiple scattering.

The new possible value is 2. If 2 is given to Molier, Molière’s multiple scat-
tering formula is used, but it’s implementation is completely different and more
rigorous than Molier=1. It also includes Bethe’s prescription15 to overcome the
small angle approximation assumed in original Molière’s theory. (Goudsmit and
Saunderson’s scattering formula16 which does not use small angle approximation
is well reflected in Bethe’s prescription). However, results by Molier=2 are (sta-
tistically) completely the same as Molier=1 for cascade showers. The difference
appears in the cpu time which is 1.6 times longer for Molier=2 than Molier=1.
Therefore, the user may use the default, Molier=1.

15Phys. Rev. Vol.15 (1953) 1256.
16Phys. Rev. Vol.57(1940)24, 58(1940)36.

28

• Automatic disk space allocation. In older versions than 9.08, if the user
inputs a large number of particles as the incident (using “+primary” file notation),
the particle stack area could overflow during particle tracking; the user had to
specify a disk file in the +primary file.

In case of light tracking, the number of light photons becomes huge. Allocating
more memory for the stack is not a good solution.

Now, if the stack area lacks, EPICS automatically creates “scratch disk file” and
the unix system deletes it at the end of job (even if the job ab-ends).

The relevant parameters could be written in sepicsfile

StackDiskFile ’scratch’ /
The default “scratch” does not mean the file name but it is a scratch file
created by the system with some system-determined file name; the path to the
file is fixed by the system;ifort will create it in /tmp/$USER/ with the name
something like fortVSXGZg. The file will be deleted at end of job (even if
abnormal end).
Caution:
If a large number of jobs is submitted in a distributed system (e.g, pc clusters),
depending on the system, many scratch files could be created in a non-local
disk (say, in the NFS mounted home) to which network access is needed, then
the jobs will almost kill the whole system due to overwhelming net work access.
In such a case, the user must specify the path explicitly which does not require
the network access. e.g, /tmp/$USER/stackdisk#. It should be noted, the
user given file will be deleted only if the job ends normally, otherwise the user
must delete it.
For the scratch files, logical device number, 13 and 16, will be used in default.

• In Cosmos, some awkward behaviors in low energy interaction models were ab-
sorbed.

13 Interaction models

phits must be used with jam or nucrin or dpmjet3

14 Warnings

• Don’t use InputP=’fix’ which requires Xinp etc. Instead, use InputP=’u+z’ etc
with Xrange=... etc.

• Don’t put the incident exactly on the boundary of two consecutive components.
EPICS will be buffaloed when judging the component the particle belongs to.

29

15 Light transportation

Appendices

A Small modifcation of the LPM formula

　 If we use Migdal’s prescription straightforward way, there appears an unnatural
bump especially for low energy electrons (Fig.5 left) just below the “starting” photon
energy (v = Xc = 1/(1+ const/Ee)), so we increased “const” value 2 times17. Though,
this modification would not be detected in the cascade simulation.

v = E�/K.Ee

v
d� dv

/r
.l

50 GeV electron in W

original

2 * const

complete screening

LPM

v = E�/K.Ee

v
d� dv

/r
.l

Brems in W

1GeV

3.16

10
31.6 100

Figure 5: Left. Blue line: complete screening case. When LPM suppression is applied,
the cross-section should be less than this line, but actually we get the green line by
the Migdal’s formula. By adjusting the constant, we get the red line. Right. Some
examples of sampling results overlaied with cross-sections with the LPM brems in W.
Terr-Michaerian’s effect which appears at very small v is neglected.

17Util/Elemag/BremPair/epBrgeneric.f

30

