World and indexing by sub-detector hierarchy

June 26, 2014

1 Implicit vs explicit

e So far (< V9.164), world definition in a subdetector or the whole detector by using _w
notation is permitted only for “box”, “sphere” and “cyl” (box_w, sphere_w and cyl_w
are the standard world).

e When the user wants to define a tight world in a subdetector and has to use non standard
world such as “prism”, “horse” etc (probably to avoid overlapping with other components),
it must be defined at the last position of the subdetector as an implicit world.

e That is, without using the _w notation, the user has to explicitly list it’s daughter component
numbers after “/” (indirectly contained ones need not be listed). Besides, the user has to
give its attributes, since it is difficult for the program to know how to place it (size, position
and orientation).

e One problem of implicit world is that, when we show subdetector hierarchy by the subdTree
command, implicit worlds are treated differently from explicit worlds, and the hierarchy
structure looks somewhat obscure.

The difference between explicit and implicit worlds are very small, but it is technically not
so easy for the program to treat an implicit world as if it were an explicit (and hence the
hierarchy structure looks the same as the explicit world case).

e As to the particle tracking, there is no difference at all between explicit and implicit worlds
(expanded config files show the same structure).

e However, if we want to use hierarchy information to access particular components system-
atically (e.g, if we want to know the component number of the /-th SciFi in the L-th layer,
etc by using the newly introduced epGetindex subroutine), we need an explicit world for
related subdetectors!.

e From V9.164, any volume-shape (structure) can be the world of a subdetector (Note how-
ever, we need special caution when using “pipe”, “honeycomb” etc which have “holes”).

e Besides cyl_w, we can now use cyl_x_w, cyl_y_w. cyl_z_wis equivalent to cyl_w.

e The attributes (size, orientation etc) of the non-standard world must be explicitly written as
in the case of the implicit world.

e Exceptions are the “cyl” case. If the attributes are not given, they are automatically assigned
by referring to the bounding box information. If given, those by the user are used.

e Normally the daughter component numbers need not be listed; they are automatically searched
for. However, if some daughter (A) contains another component (B), but the contained one
(B) protrudes its mother (i.e, container) (A) (say, A is a pipe), we have to specify a container
(C) of the protruded part (B’) of B otherwise B’ is not recognized properly.

'Explicit world is not mandatory. In some case, it is possible to apply epGetIndex even when target objects are
contained in an implicit world.

If the world must play a role of such a container (C), we have to list the number for B
explicitly, otherwise the program regards that B is already contained indirectly via A and
omit the number of B. These are the same as in the past.

5 A ... / .. / 6
6 B / ...
Cw .../ ... / 6

e The name length of volume-shape (such as box, sphere etc) was 12. The current longest
names are honeycomb (9) and fpolygon (8), so 12 was enough even for honeycomb_yz but
honeycomb_yz_w exceeds 12. Therefore, this was now changed to 16 (same as subdetector
name).

2 Alias of medium name

From the point of view of easy indexing of components in a detector, this is the same category as
the indexing by using subdetector hierarchy (see Sec.3).

e The user can give aliases to a particular medium.

e For example, to SCIN an alias of CHD (CHarge Detector) may be given. Depending on
the direction of CHD, the user may want to give CHDx and CHDy. Original SCIN is still
usable.

e Alias must be specified in the config file before it is used like?

#alias CHD SCIN
#alias CHDx SCIN
#alias CHDy SCIN
#alias clad SciFi

1 box CHD O 20 / ...
2 box CHDx 0 2
3 box CHDy O 2
4 box SCINO -20 / ...

o/ ...
o/ ...

5 box clad 0 -2 0 / .../ 6
6 box SciFi ® 2 0 / ...

e The alias name must be different from any of the existing media names and its length must
be < 8 (=MAX_MEDIANEMELENG in ZepMaxdef.h). One and the same name must not be
assigned to different media names.

e The name is kept in “matter” part of the component. Suppose the component number is
“cn”, then Det.cmp(cn).matter keeps the alias of the medium of that component. If no alias
is given, it becomes the true name.

e For a given component number, the user can obtain alias and true name of the medium of
that component by

call epgCn2AliasMediaName(cn, aname, tname)
where aname and tname are defined character variables with length (> MAX_MEDIANEMELENG)
to receive alias and true name.

2Here “clad” is fake; clad of SciFi must not be SciFi (refraction index must be < SciFi).

Note that
call epgCn2MediaName(cn, tname)
is to get the true name. (One in the Media structure as Media(index).name is the tname).

3 Making an index table by using hierarchy information

Suppose a number of layers containing SciFi’s in a detector. We want to know the component
number of i—th SciFi at j—th layer. If the number of SciFi’s are the same in each layer, we would
be able to construct an integer array such that cn=ScifiIdx(j, i) gives the desired component
number. However, constructing such an array is rather a messy task, and if the detector is modified
there could be a danger in using the same procedure without modification.

The method here is simple and rather robust. As an example, take a rather complex detector
consisting of 407 subdetectors as shown below.

1 chdix 125 sfx 398 tasc-xyxc
2 chdx 126 sfx8 399 tasc-xyya
3 chdly 127 sfx64 400 tasc-xyyc
4 chdy 128 sfxlsheet 401 tasc-in

5 chd 129 sfy 402 tasc-inb

6 chdmemb1l 130 sfy8 403 tasc-inxa
7 chdmemb?2 131 sfy64 404 tasc-inxc
8 chdassyl 132 sfylsheet 405 tasc-inya
9 chdassy2 133 sfxlsheet 406 tasc-inyc
10 pmt-pltl 134 sfylsheet 407 tasc

The “subdTree config 1” command produces a hierarchy map shown in Listing 1. The numbers
after | are depth of hierarchy followed by a sub-detector name or volume-shape name. If * is
attached, it is a simple component without containing other components. The next number is the
component number followed by the volume-shape and medium name. There are lots of SciFi’s;
1 sheet of SciFi’s which are position sensitive to the x—direction is denoted by a sub-detector
sfxlsheet in which a number of SciFi’s are contained. They are at depth 7 of the hierarchy.
Another sheet of SciFi’s sensitive to y—direction is contained by the sfylsheet sub-detector.

Here, we call components which we want to identify “target”. In this example, the target is
SciFi. We want to distinguish SciFi’s for x and y, then the minimum hierarchy specification for
our “target” is ’sfx1sheet SciFi’ for x and ’sfylsheet SciFi’ for y. Let’s assume these are enough,
i.e, other SciFi’s do not get mixed. Then we may define two rank 2 (i.e, 2-D) integer arrays: name
is arbitrary and we use here SciFiXIdx for x and SciFiYIdx for y.

o - Y T U VR R

Listing 1: hierarchy

H---- subdetector hierarchy ----
| ® world 56746 sphere_w sp
| 1 imcbox 52531 box sp
| 2 imc-top 46 box sp
| 3 box* 1 box Al17075
| 3 box* 6 box hollow
| 3 horse* 5 horse hollow
| 6 box* 2440 box SCIN
| 6 sqtccl 2441 sqtccl Acrylic
| 6 cyl_x 2442 cyl_x Acrylic
| 3 sfxlsheet 3517 box sp
| 4 sfx64 2598 box sp
| 5 sfx8 2464 box sp
| 6 box* 2446 box sp
| 6 sfx 2448 box clad
| 7 box* 2447 box SciFi
| 6 sfx 2450 box clad
| 7 box* 2449 box SciFi
| 6 sfx 2452 box clad
| 7 box* 2451 box iFi
| 6 sfx 3511 box clad
| 7 box* 3510 box iFi
| 6 sfx 3513 box clad
| 7 box* 3512 box iFi
| 6 box* 3514 box Sp
| 3 sfylsheet 4589 box sp
| 4 sfy64 3670 box sp
| 5 sfy8 3536 box sp
| 6 box* 3518 box sp
| 6 sfy 3520 box clad
| 7 box* 3519 box SciFi
| 6 sfy 3522 box clad
| 7 box* 3521 box SciFi
| 7 box* 4584 box SciFi
| 6 box* 4586 box Sp
| 3 optlxl4u 6528 horse Sp
| 3 optlxlwrldu 6527 horse Sp
| 4 optlxlwr7u 6042 horse sp
| 5 optlxlwr 5627 horse sp
| 6 optlxlwrl 5575 horse Sp
| 7 horse* 5559 horse SciFi
| 7 horse* 5560 horse SciFi
| 7 horse* 11370 horse SciFi
| 7 horse* 11371 horse SciFi
| 3 sfxlsheet 13417 box sp
| 4 sfx64 12498 box Sp
| 5 sfx8 12364 box sp
| 6 box* 12346 box Sp
| 6 sfx 12348 box clad
| 7 box* 12347 box SciFi

kasahara katsuaki

kasahara katsuaki

kasahara katsuaki

kasahara katsuaki

kasahara katsuaki

kasahara katsuaki

kasahara katsuaki

kasahara katsuaki

kasahara katsuaki

kasahara katsuaki

kasahara katsuaki

kasahara katsuaki

N - N R SO CUR R

A code fragment (Listing 2) will work for getting SciFiXIdx. Normally, we may get index
arrays only once in a simulation; then the appropriate place would be in uiaev (or its slave) in
ephook.f. This example subroutine epSetIdx is assumed to be called from uiaev (must be com-
piled before ephook.f is compiled). The arrays must be available for use in other places so that
they are put in a module. Its name here is modIndexing but it is arbitrary as long as no name
collision happens.

SciFiXSpec: specifies target hierarchy. One sfx1sheet exists in one layer and contains target
SciFi’s for x.

SciFiXShape: to store the shape (size) of SciFiXIdx.

ScifiXIdx: this is the target 2-D index array. The user, in principle, already knows the shape, but
we use information obtained by epCountSubdTree and allocate it.

epCountSubdTree: may be used to get the shape (but not mandatory). The input is SciFiXSpec.
n becomes the rank of the shape (=2).

SciFiXnum: is a 2-D pointer array. The value at an index (I,m) shows the number of targets
satisfying a certain condition (see later). The size is allocated inside epCountSubdTree
automatically. The user may normally treat it as a usual integer array. In this simple usage,
a value is available only at index (1,1): SciFiXnum(1,1) shows the number of SciFiX’s in
each layer, that is, same as SciFiXShape(2).

Besides the parameters shown in this example, there are some optional parameters (see
later).

epGetIndex: the index array, SciFiXIdx, is obtained by calling this subroutine. The first two are
input and the last three output. Optional parameters are the same as for epCountSubdTree.

Listing 2: Getting Index

module modIndexing
! SciFi for X

character (len=*) ,parameter:: SciFiXSpec="sfxlsheet SciFi"
integer:: SciFiXShape (2)
integer,allocatable:: SciFiXIdx(:,:)

integer,pointer::SciFiXnum(:,:)
end module modIndexing

subroutine epSetIdx
use modIndexing
use modGetIndex
implicit none
integer:: i,j, n
integer:: Nlayer, NSciFi
! get shape of SciFiXIdx.
call epCountSubdTree(SciFiXSpec, SciFiXShape, n, SciFiXnum)

write(0,*) ’SciFiXnum =’,SciFiXnum

Nlayer = ScifiXShape (1)

NSciFi = ScifiXShape(2)

write(0,*) ’ ScifiXShape=’, Nlayer, NSciFi

allocate(SciFiXIdx(Nlayer, NSciFi))
call epGetIndex(SciFiXSpec, SciFiXShape, SciFiXIdx, SciFiXnum)
do i = 1, Nlayer

do j = 1, NSciFi
write(®,’(a, i4, a, i4, a, i6)’)

28
29
30
31
32

S T Y T N T

© e N ;R W N =

SR

& ScifiX # ’,j, ’ in layer ’,i, has comp#=",
& SciFiXIdx (i, j)
enddo
enddo
end subroutine epSetIdx

Once SciFiXIdx is obtained, the user can get the component number of a SciFi specified by
its layer (1:Nlayer) and the number (1:NSciFi). The output from the example will look like,

ScifiX # 1 in layer 1 has comp#= 2447
ScifiX # 2 in layer 1 has comp#= 2449
ScifiX # 3 in layer 1 has comp#= 2451

3.1 A minor problem

The SciFiXTdx has a “top-down” hierarchy or Japanese style addressing, i.e, indexes appear with
the higher (less deeper) hierarchy order. This is suited for the C-language style memory allocation.
In many cases, some consecutive numbers of SciFi’s at a layer may be accessed in the program
at a time. These consecutive SciFi indexes are allocated by the C-language consecutively in the
memory space but by Fortran it is sparse and could lead to delay of the memory access.

This effect is expected normally negligible but if the user wants to European/American style
addressing suited for Fortran memory allocation, the user may re-shape the SciFildx as follows.

integer:: FSciFiXShape (2)
integer,allocatable:: FSciFiXIdx(:,:)

forall(i=1:2) FSciFiXShape(3-i) = SciFiXShape (i)

allocate(FSciFiXIdx(NSciFi, Nlayer))

FSciFiXIdx =reshape (SciFiXIdx, FSciFiXShape, order=(/2,1/))
deallocate(SciFiXIdx)! if no more needed, delete.

Then, the first index of FSciFiXIdx is for the SciFi numbers (1:NSciFi) and the second the
layer number (1:Nlayer). The same method can be applied for higher rank arrays.

3.2 Combining two or more index arrays

In a similar fashion, one can make SciFiYIdx. If the number of x and y SciFi’s are the same, one
may want to use unified name such as SciFildx and distinguish x and y by index but not by the
array name. For that, we have to define a rank 3 (3-D) array SciFiIdx(2,...). The coding will
be like this.

integer:: SciFiShape(3)
integer,allocatable:: SciFilIdx(:,:,:)

! combine two
SciFiShape (1) = 2
SciFiShape(2:3) = SciFiXShape(1:2)
allocate(SciFiIdx (2, Nlayer, NScifi))
SciFiIdx(1l,:,:) = SciFiXIdx(:,:)
SciFiIdx(2,:,:) = SciFiYIdx(:,:)

deallocate(SciFiXIdx) ! delete if no more needed
deallocate(SciFiYIdx)

T R« Y T U R R

Adding one more array, say, SciFiZIdx, is simply done by changing a part and adding some
like

SciFiShape(l) = 3
allocate(SciFiIdx(3, Nlayer, NScifi))
SciFiIdx(3,:,:) = SciFiZIdx(:,:)

Fortran oriented arrays are also similarly combined or combined SciFiIdx can be re-shaped to a
Fortran oriented array.
3.3 Making combined index directly

A direct way of making a combined index array like SciFiIdx above, is to give a hierarchy like
“|sfxlsheet,sfylsheet| SciFi”. The code fragment is

module modIndexing
! SciFi for X,Y
character(len=*),parameter::SciFiSpec=

@ "|sfxlsheet,sfylsheet| SciFi"
integer:: SciFiShape(3) ! if | | is used, rank must be +1
integer,allocatable:: SciFilIdx(:,:,:)

integer,pointer::SciFinum(:,:)

! reshaped index; Fortran oriented version
integer:: FSciFiShape(3)
integer,allocatable:: FSciFildx(:,:,:)
end module modIndexing

subroutine epSetIdx

use modIndexing

use modGetIndex

implicit none

integer:: i,j,k, n

integer:: Nlayer, NSciFi
character(len=1):: xy(2)=(/’X",’Y’/)

call epCountSubdTree(SciFiSpec, SciFiShape, n, SciFinum)

write(®,*) ’SciFinum =’,SciFinum
Nlayer = ScifiShape(2)
NSciFi = ScifiShape(3)

write(0,*) ScifiShape=’, SciFiShape(1:3)
allocate(SciFiIdx(2, Nlayer, NSciFi))
call epGetIndex(SciFiSpec, SciFiShape, SciFildx, SciFinum)
do k =1, 2
do j = 1, Nlayer
do i = 1, NSciFi
write(®,’(a,a, i4, a, i4, a, 1i6)7)
& ’ Scifi ’,xy(k),’ # ’,i, ’ in layer ’,
& j, ’ has comp#=’, SciFildx(k, j,i)
enddo
enddo
! reshape; Fortran oriented array
forall(i=1:3) FSciFiShape(4-i) =SciFiShape (i)
allocate(FSciFiIdx(NSciFi, Nlayer, 2))
FSciFildx =

42
43
44
45
46
47
48
49
50
51
52

*

reshape(SciFiIdx, FSciFiShape, order=(/3,2,1/))

do k =1, 2
do j = 1, Nlayer
do i = 1, NSciFi
write(®,’(a, i4, a, i4, a, i6)’)
& 'F Scifi ’,xy(k), * # ’,i , ' in layer ’,j,
0 ’ has comp#=', FSciFildx(i,j,k)
enddo
enddo
enddo

end subroutine epSetIdx

The restriction and note on |abc, xyz| notation.

e Letsregard | ... | inthe “spec”ification of hierarchy 1 item. It can be used only for the first
item in the “spec” data (if there is only 1 item, it must be the target, then, we cannot use
this).

e The rank of “shape” and “index” array is usually the number of items in the “spec” data.
But if thereis | ... |, 1 must be added.

722

e Items inside | ... | must be “,” separated. At least 2 items must exist there (if only 1, | |
effect is neglected). The maximum number of items there must be <= 4. Blanks may be
placed inside | ... |. So |abc,xyz]|, | abc, xyz]|, |abc , xyz |, |abc , xyz,pqr],
etc are OK.

e Suppose hierarchy of spec="[A1,A2,A3| B T”. In this case, there are 3 paths “Al1 B T”,
“A2B T” and “A3 B T”. Let’s call | ... | part top branch. Top branch counter (say, name it
tbc) runs from 1 to 3 in this case. The “num” pointer array is defined as num(3,1) automat-
ically; 3 comes from the number of items in | ... |. Its value (3 in this case) is contained
in a variable, ntbr. num(ibc,1) becomes the number of target “T” in the ibc-th branch. If no
top branch is specified, we may regard that ntbr=1.

3.4 Time needed for getting the index array

In the example so far, the number of components is large; reading and processing the “config”
file before starting particle tracking simulation inside the detector takes ~63 s. So one may feel
nervous about time needed for getting the index array. However, it takes only ~0.15 s to get 2
index arrays, convert them to Fortran oriented shape, combine them and, print out ~ 14500 lines
(By MacBook pro 2.9GHz).

In many smaller scale config’s, time spent for getting an index array is <ms.

4 Treating odd sub-detectors

Suppose a detector, as in Fig..1(left), consisting of 2 layers with the same structure®. This detec-
tor has odd structure; “sheet” has a number of subdetectors and each of which has some deeper
structure and finally target CHDx’s (in total 100; CHDx is an alias of SCIN here). Another CHDx
container in the same layer, “oddx4”, is odd; its size and the number of CHDx’s (=12) inside are
different from those in “sheet”. So if the user makes two index arrays for spec="“sheet CHDx” and
for spec="*0ddx4 CHDx”, these CHDx’s can be handled.

However, in some case, the user may want to define one index array and treat all of the CHDx’s
by that array. This is possible a) if the number of sheet’s is the same as that of oddx4’s, and b) they
are last but one items in the “spec” data.

3“Config” files in this section are available in UserHook/Indexing.

o R« Y T U SR R

The “sheet” and “oddx4” satisfy this condition. Then, we can use the following “spec” data:
spec="(sheet,oddx4) CHDx". The usage of “,” and space inside ”()* is the same as the top
branch case. But c) the number of items inside (...) must be 2. Therefore, if there is another
odd subdetector containing CHD’s in the same layer (say, aoddx4, Fig.(right)), we cannot use

"(sheet,oddx4,aoddx4) CHDx"

(in this case, error stop will happen: violation of c)).

-

==
=

m\s
\\s.

e

=
=

//r’f/—

e

e
==

/
e
e

/
e

/
e

=

e ===

e
==
= == =
e

/,,
e
e

==

==
=

=

=

==
=
=

==
e

e

=

e
=

=

=

Figure 1: Left: Odd sub-detectors are placed at left-hand side. (oddx4).

Even if one uses spec= " (sheet,oddx4) CHDx", if there is one more “oddx4” (instead of
aoddx4) as in Fig.(right), the number of oddx4’s becomes 2 while that of sheet’s is 1 in the same
layer, so a) is violated (in this case, no error stop will happen, but index will look strange).

Listing 3: Treating odd structure

! configB is used; to be specified in FirstInput
module modIndexing
character(len=*) ,parameter:: Spec="(sheet,oddx4) CHDx"
! next Spec can be used without changing other part
! Spec="(oddx4,sheet) CHDx"
integer:: Shape(2)
integer,allocatable:: CHDIdx(:,:)

integer:: FShape(2)
integer,allocatable:: FCHDIdx(:,:)

integer ,pointer:: CHDnum(:,:)
end module modIndexing

subroutine epSetIdx
use modIndexing

use modGetIndex
implicit none

integer i,j, n, oddl
integer Nlayer, NCHDx

call epCountSubdTree(Spec, Shape, n, CHDnum)
write(®,*) ’1 num=’', CHDnum(l,:)
write(0,*) ’Shape=’, Shape(:)

oddl = index(Spec, "oddx4")
if(oddl > 3) then
write(®,*) ’0dd part contains’,CHDnum(1,2), ’ CHD,’

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

write(0,*) ’they are located at the last part’

else
write(0,*) ’0dd part contains’, CHDnum(1,1), ’ CHD,’
write(®,*) ’they are located at the fisrt part’
endif
Nlayer = Shape(l)
NCHDx = Shape(2)
write(0,*) ’ Nlayer=’,Nlayer, ’ NCHDx=',NCHDx

allocate(CHDIdx(Nlayer, NCHDx))
call epGetIndex(Spec, Shape, CHDIdx, CHDnum)

do i = 1, Nlayer
do j = 1, NCHDx
write(®,’(a, i4, a, i4, a, i6)’)
* > CHD # ’,j, ' in layer ’,i, ’ has comp#=’,
& CHDIdx (i, j)
enddo
enddo
end subroutine epSetIdx

In this case, num(1,1) becomes the number of targets in “sheet” (100), and num(1,2) that in
“oddx4” (12). In general, num(*,2) is used to count the number of targets in the “odd” subdetector.
Shape(1) becomes the number of layers (=2) and Shape(2) becomes the total number of targets in
each layer, i.e, num(1,1) + num(1,2). In CHDIdx(*,1:100) is for “sheet” and CHDIdx(*,101:112)
for “oddx4”.

Which is odd, “Sheet” or “oddx4” ? This is arbitrary. So Spec=""(oddx4,sheet) CHDx"
may be used, instead of Spec="(sheet,oddx4) CHDx". In this case, the roll of num(1,1) and
num(1,2) is interchanged.

4.1 How to overcome a) and c)

If the user insists on using only 1 index array, one workaround for the case of Fig.(right) is to
put every geometrically related subdetectors in a larger subdetector (odddummy in the right Fig.),
and use Spec="(sheet,odddummy) CHDx". In this case, num(1,1)=100 and num(1,2)=24 will
result.

4.2 How about 1 layer lacks an odd subdetector ?

If “odddummy” is missing in one of the 2 layers, or more generally, suppose the number of layers
is much larger than 2, and some of them lack an “odddummy”, what will happen ? This violates
condition a) again. So not permitted, but no error will be reported. If the problematic layer is
the last one, the index array will be created correctly: index values at missing layers will be 0.
However, this type of usage is not recommended.

4.3 If top branch is applied ?

In the previous example, “sheet” and “odddummy” (or “oddx4”) are regarded as odd subdetector
case. They are, however, at the top hierarchy so we may regard them a top branch by putting
| ... |. That is, what happens if we use Spec=""|sheet, odddummy| CHDx" ?

In this case, Shape becomes (2,2,100) (i.e, rank becomes 3) and CHDnum(1,1) = 100, CHD-
num(2,1) = 24. The shape of CHDIdx becomes (2,2,100).

10

CHDIdx(1,1,1:100) are for 100 CHDx’s in layer 1 of “sheet”.
CHDIdx(1,2,1:100) are for 100 CHDx’s in layer 2 of “sheet”.
CHDIdx(2,1,1:24) are for 24 CHDX’s in layer 1 of “odddummy”.
CHDIdx(2,2,1:24) are for 24 CHDx’s in layer 2 of “odddummy”.

The memory space of CHDIdx(2, 1:2, 24:100) are not used and O is filled.
If some “odddummy” is missing as in Sec.4.2, the result will be also NG, except for the case
that the layer is the last one.

5 Optional parameters

Subroutines epCountSubdTree and epGetIndex can take same optional parameters. They can
be specified by using the following names:

target: Normally the target is assumed to be a simple component (i.e, not containing another
component) and is a medium name.
If this is not enough, one may use
call epCountSubdTree(..., target="xxx")
or
call epGetIndex(..., target="xxx")
where “...” denotes mandatory parameters”.
The number and order of optional parameters are arbitrary. xxx may take one of

container: The target is container of another component

any: The target may be simple or container.

simple: This is default so need not be given, but is acceptable.

subd: The target name is not a medium name but is subdetector name.

dE: This is used as dE=2 etc in the optional parameter position. If the target component’s
countDE (energy loss count specification) does not match with this dE value, the target
is not accepted. Normal value of dE is {2,1,0,-1,-2}.

IO: This is to check the matching with countlO, i.e, (particle in/out count specification). Normally
value is I0={1, 2, 3}.
If both “dE” and “10” are specified, “or” is taken. Requirements by other parameters, if any,
are processed as “and”.

judgeBy: This is different from others since this specifies a user supplied logical function which
judges that the current target candidate is to be accepted or not. Therefore, this may be
prepared only if other target specification does not work well. The program structure will

be like Listing 4.
Listing 4: Ultimate judge

1 subroutine epSetIdx ! assumed to be called from uiaev.
2 implicit none
3 logical, external:: ultimante
4 -
5 call epCountSubdTree(... judgeby=ultimate)
6 -
7 call epGetIndex(... judgeby=ultimate)
8
9

end subroutine epSetIdx

4The same optional parameters must be given to epCountSubdTree and epGetIndex for the same “spec” data.

11

© e N W R W N =

=

11 function ultimate(mother,
12 use modGetIndex

13 implicit none

14 | #include "Zep3Vec.h"

15 | #include "Zcnfig.h"

cn) result(ans)

16 integer,intent (in)::mother ! subdetector index of the mother
17 ! of cn. probably not needed.

18 integer,intent(in):: cn ! comp. # of the target candidate

19 logical:: ans

20

21 ans = (give .true. or .false.; .ture.=> accptable.)

2 end function ultimate

5.1 Some examples

We see “clad” in subdetector hierarchy shown in Listing 1. It is an alias of “SciFi”. Therefore, if
we didn’t use the alias, “clad” appeared as “SciFi” like:

| 6 sqtccl® 2441 sqtccl Acrylic
| 6 cyl_x* 2442 cyl_x Acrylic
| 3 sfxlsheet 3517 box sp
| 4 sfx64 2598 box Sp
| 5 sfx8 2464 box Sp
| 6 box* 2446 box Sp
| 6 sfx 2448 box SciFi
| 7 box* 2447 box SciFi
| 6 sfx 2450 box SciFi
| 7 box* 2449 box iFi

Even with this condition, spec="sfx1lsheet SciFi" is enough for selecting target “SciFi”
at depth 7 since target="simple" is default. In some case, one may want to make “SciFi” at
depth 6 the target. In this case, it is not recognized as matching with the target by the “spec”
shown above. To make it work, we may give (..., target="container") in the calling sequence
of epCountSubdTree and epGetlndex. If we want to make “SciFi” at depth 6 and 7 the target
simultaneously, we may give (..., target="any").

It is possible to select “sfx” at depth 6 by giving spec="sfx1lsheet sfx". In this case, “sfx”
is not media name but is subdetector name so that we have to give (..., target="subd").

6 Complex case

If “spec” is like " |A1,A2|] (C1,C2) T"or"|Al,A2| B (C1,C2) T", whatwill happen ? This
complex case hasn’t been tested, since no such complex case has been met yet. As a program logic,
this type should be treated properly. But no test yet!

7 Utility

By issuing a command®, tree2index, the user can test some class of “spec”. The usage will be
shown simply by typing tree2index. If the user forgets the name, configMenu command will
show it since this is related to “config”. The usage is:

>The PATH must be set properly, i.e, SEPICSTOP/Scrpt must be included there.

12

kasahara katsuaki

kasahara katsuaki

kasahara katsuaki

kasahara katsuaki

kasahara katsuaki

kasahara katsuaki

kasahara katsuaki

tree2index config spec
where “config” is the path to a “config” file, “spec” a specification of a target by hierarchy such as
sfx1sheet SciFi
"|sfx 1sheet,sfy1sheet|” SciFi
’(sheet,oddx4)” CHDx
(...) or|...| must be enclosed by commas. The max number of items in “spec” is 4. (If |...| is used, 3).
Optional parameters are not permitted. For such a case, visit $EPICSTOP/UserHook/Indexing.
The output is on sdtout so it may be re-directed to a file like, tree2index config spec > testout

13

