Summary of the Recent Updates of EPICS

K.Kasahara

September 22, 2011

Contents
1 Remarks
2 dE/dx of heavy ions

8

9

2.1 Creating anew SRIM data

Minimum Energy
3.1 AutomaticEmin

Modifier

4.1 Quenching coefficients L
4.2 User own quenching treatment
4.3 Getting the sum of energy deposit and effective energy deposit

Seeing the minimum energies and quenching coefficients
New user interface

New volume shape

Inquiry and other useful subroutines

Other updates and input parameters

10 Interaction models

11 Warnings

12 Light transportation

11

11

12

12

20

21

21

22

This manual describes the recent update (for version 9.10) as well as some summary
including old stuff and some obsolete parts of EPICS.

1

Remarks

v9.081 vs v9.10 There are rather many differences between EPICS version 9.08 and

9.10: If we should find some defect in v9.10, we might be forced to go back
9.08. However, some modification of v9.08 is mandatory. V9.081 is the minimum
update of v9.08.

Emin and tracking scheme In V9.10, we introduced automatic Emin setting de-

pending on the size of the detector component, special treatment of such setting
(Emin and/or quenching factor) for a specified component, etc. To stop tracking
of a particle, V9.08 used only Emin information but V9.10 could use residual
range information. Results by V9.10 have been compared with those by V9.08
to find that there is no statistically significant difference between them (as to the
energy deposit, < 0.5%). If we use residual range information, the execution
seed is improved by about 20~30%.

New volume-shape As to the treatment of a detector component such as described

by “pipe_y”, there is some subtle difference between 9.08 or earlier and 9.10.
V9.10 introduced new shapes (octagon and honeycomb which permit “_y* type
notation)!. This cannot be treated by V9.08 without some modification of the
source code. (The maximum character length of the shape name was changed
from 8 to 12). V9.081 is a version that can understand this new feature with a
minimum change of V9.08.

Cosmos version The following combination must be used. Cosmos7.581 is little bit

Jam

Table 1: default

’ EPICS ‘ Cosmos ‘

9.081 7.581
9.10 7.60

different from 7.58; mis-conversion of 7 and A" code from QGSJET-II was cor-
rected. Completely stopped anti-proton cannot annihilate in the Jam code and
this leads to infinite loop. Although very rare, 7% makes a collision in Jam which
cannot treat it. These were corrected. Cosmos7.60 could use the “sofia” code for
photo-hadron production.

code The Jam code in 9.10/9.081 is the same as in older EPICS’s (Y. Nara,
Nucl. Phys. A 638, 555¢ (1998));

It has some problem with the treatment of spectator nucleons in heavy ion colli-
sions. Spectator nucleons in a projectile or target, emerge as independent nucleons
after collision (even for elastic collisions). That means, for example, when Fe is a
projectile, we will never get He secondaries after a collision. The current EPICS

!These new components and new treatment of “_y” type specification are described in another
manual.

treatment of these nucleons is that we accept all nucleons from projectile while
discard all spectator nucleons from target. (Let’s call this Jam Jam]l)

There is another Jam code embedded in the PHITS code? In this Jam, the spec-
tator problem has been solved by the PHITS author . Let’s call this Jam Jam2.
However, Jam2 inherits some defect existed in the original Jam, say, KO cannot
be a projectile particle and other minor bugs. Such problems have been corrected
in Jaml. The implementation of Jam2 is under investigation.

Jaml and PHITS combination In the current versions, combination of
IntModel=""phits 2.5 "jam" 5 "dpmjet3"’
was expected to improve the proton primary case at low energies (< 200GeV).
However, the current tendency is rather opposite and contradicts earlier observa-
tion. This is under investigation.

Intel compiler vs VAX extension This is very much annoying stuff. Cosmos/EPICS
are old and use structure construct based on the so called VAX extension®. The
compiler seems to have a bug in dealing with the VAX style structure and in some
case we encounter quit strange phenomena. Suppose a code fragment like

structure /epPos/
real(8):: x, y, z
end structure

record /epPos/ p(100)
integer n

real(8):: d
p(n).x = 0.
pn).y = d

p(n).z = 0.

In some case, even if “d” is non zero, p(n).y becomes 0. This dose not happening
always, but seems to depend on other environment, So far we could not detect
the condition for such happening.

One workaround is to write
p(n) = epPos(0.40, 4, 0.d0)

p(n) .y = dlike coding is everywhere; in the case of detector drawing, it is easy to
find the happening. However, in other pars, it is rather difficult to find the same.
The users are recommended to use epPos(..) style coding in their UserHook.

2PHITS is a one complete package (K. Niita et al., Radiation Measurements 41, 1080 (2006)) for
particle transport (at low energies). PHITS includes several interaction models including Jam. The
interaction model specified by IntModel=""phits”’ implies such models but does not include Jam. An
appropriate model inside PHITS is selected depending on the energy and projectile type.

3Before Fortran90, there was no structure construct formally in Fortran. However, the C-language
style structure has been used long time and it is called VAX extension. This extension is supported by
the Intel Fortran compiler but Intel seems not serious about its support and the recent compiler says
it will become obsolete in the future versions..

2 dE/dx of heavy ions

The ionization energy loss rate (—dE/dz; hereafter we regards dE/dx has a positive
value) of heavy ions at low energies has been treated by an effective charge method and
is fairly accurate down to a few hundred MeV/n where accelerator test experiments
are usually performed. However, at lower energies, we need a more accurate treatment.
We introduced two things:

o A better effective charge method (Pierce and Blann. Phys. Rev. 1968 vol.173,No2.
pp.390-404. With later errortum). Some modification has been done for the He
case.

e Incorporation of the SRIM data (http://www.srim.org/#SRIM). At present the
data for plastic scintillator and SciFi are available. (They are currently regarded
as the same media).

Fe in SCIN
0 ——————7 77—
L : + : default sampling
(Srim+StoppingPw=1)]
No restricted; Esrim<500Ge}Y
X line SRIM data]
. i X : StoppingPw.= ~L(no srimA
fé‘ % no restricted) : :
) S 7 StoppingPw = =1
g S : R . restricted (LOOkeV)
@ 10 it e el be
X ponmmmmmommmmoon]
el
o
T
]
0.09 Gev/n Y
P Y T S S T S S i
0.001 0.01 0.1 1 10 100 1000 10000

Ektotal (GeV)

Figure 1: dE/dx of Fe in SCIN. Green line is by SRIM. Lower dots are the restricted
energy loss rate with RecoilKeMin=100 keV. Upper one the full dE/dz. They coincide
below 0.09 GeV /n. Blue crosses (x) by StoppingPw=-1 (new effective charge method)
agree with the green line fairly well.

Table 2: Related parameters. D=xx means the default

’ variable ‘ in value ‘ description ‘

StoppingPw epicsfile D=1 When SRIM data is available at low
energies (see SrimEmax below), use
it. At higher energies, the effective
charge method shown above is used.
2 Same as above, but the old effective
charge method is used.

-1 or -2 | Even if SRIM data exists, it is not
used. The effective charge method
corresponding to 1 or 2 is used.
SrimEmax epicsfile D=0.09 | (GeV/n). Above this energy, SRIM
data is not used. In the actual
simulation, this value should not
be much larger than this since the
SRIM data is for the average of the
total energy loss including high en-
ergy d-rays from the knock-on pro-
cess. We use the restricted energy
loss and é-rays above RecoilKeMin
are randomly generated.
MAXHEAVYCHG | ZepMaxdef.h 30 In Epics/epics. Maximum charge
that can be treated by SRIM. If
changed, recompiling of all sources
may be needed.

MAX_SRIMMEDIA ZepMaxdef.h 3 In Epics/epics. Maximum number
of media for which SRIM data can
be used.

2.1 Creating a new SRIM data

If the user want to add more SRIM data to the existing data or to create new SRIM
data for a particular media, Epics/Util/SRIM may be consulted. The Readme there
will tell how to do. To see continuation of the SRIM data to the larger energy region,
testdEdx.sh in Epics/Util/Elemag/dEdx may be used.

3 Minimum Energy

Before v9.10, the minimum energy of particles (gamma, electrons...) during the particle
tracking is fixed by parameters given in epicsfile. Although it can be dependent on
the particle type, it is unique and independent of media thickness. In some case we
have a thick PWO and thin Si, or have to transport particles in a very long beam pipe
before they reach the detector. In such cases, the minimum energy may be better to
be dependent on the detector component.

In v9.10 or later,

e Automatic determination of the minimum energy is possible. The value is fixed
for each component by considering its media and thickness.

When the particle energy becomes lower than the minimum, the particle tracking
is not necessarily stopped; in some case further tacking is continued as described
in Table below.

If the value fixed by the automatic way or old way is not satisfactory, there is
a mean to fix the minimum for each particular component. See the Modifier
section.

The procedure for the automatic determination could be changed by the user.
(Probably, such needs will be rare).

Basically, the default Eabsorb specifies that the kinetic energy of a charged particle
and photon is absorbed at the point where the particle energy becomes lower than the
predefined minimum. However, if the particle can decay or annihilate, EPICS may
follow the particle down to 0 or some lower energy.

3.1

Automatic Emin

The automatic minimum energy is calculated in the subroutine located in
Epics/prog/UserMayChange/epAutoEmin.f

If AutoEmin is non 0, this program is called to fix the minimum for a given component.

The default value, 2, specifies the following procedure.

Use the input “minimum” thickness of the component in g/cm?(= t).

Compute, max(min(150v/¢, 10), 150)x10~% (GeV). That is, the value is always
between 10 and 150 keV. The value is used for photons (EminG). For electrons,
2 times of this is used and electron mass is added (EminE). Later, the range
consideration is applied.

For AutoEmin=1, we compute max(min(100v/¢, 10), 100)x107% (GeV) and as-
signed to EminG and EminE.

In both of the above cases, the value of RecoilKeMin is fixed by
max(EminG, 14221079)

where Z is the effective atomic number of the media. That is, the rough K-shell
energy is considered (GeV).

The values for KEmin is fixed to be the same as EminG

EminH is unchanged.

If the user give a value > 2 to AutoEmin and add a program fragment in epAu-
toEmin.f, different treatments can be used. If it is 4, the range consideration will be
done same as it is 2.

Table 3: Related parameters

’ variable \ in \ value \description

AutoEmin | epicsfile D=2 The minimum energy is fixed automatically (see
section for Automatic Emin). If the particle
energy becomes lower than the minimum, the
residual range of the particle is computed and
compared with the distance to the boundary of
the present component. If the range is smaller
than the distance to the boundary, the energy is
assumed to be absorbed within the range.

0 The old method is used. The values (EminElec,
EminGamma, KEmin, EminH) are listed below.
1 Some smaller values of Emin than the Au-

toEmin=2 case are employed but we don’t con-
sider the range and treated as AutoEmin=0
case.

3,4 Reserved for the user. For 4, the range is con-
sidered like AutoEmin=2 case.

EminElec | epicsfile | D=511e-6 | (GeV) By historical reason, the minimum for
electron is always in the total energy.
EminGamma | epicsfile | D=100e-6 | (GeV) Photon minimum energy (different from
the one for light)

KEmin epicsfile D=0 If 0, the minimum kinetic energy for electron is
used. This is for the minimum kinetic energy
for other particles than electron and neutron
EminH epicsfile D=0 If 0, 20 MeV is used for neutron minimum ki-
netic energy

RecoilKeMin | epicsfle D=0 If 0, EminGamma is used. The restricted energy
loss is computed below this energy and J-rays
are randomly generated above this energy.
Eabsorb epicsfile D=14 The bit pattern of Eabsorb determines how to
treat energy of a particle when its energy be-
comes lower than the predefined minimum. For
details, see epicsfile in UserHook/Template.
See also below.

4 Modifier

The user may need to specify some specific minimum energy or non default quenching
effect coefficients for some components?. In such cases, the user may give a number in
the modifier digit for that component in the config file (see Fig.). The user must
prepare a ModifyFile in which the user give that number followed by necessary entries

4The quenching coefficients are normally given in the media file and used as the default. If a modifier
described here is to specify a change of the coefficients, the quenching treatment is applied even if there
is no default specification.

1..

4box scin 1203/ 00+ abc
5 ...

This is to show the format of ModifyFile

any comment before

Valid data must start from the 2nd column
(same as epicsfile/sepicsfile) and ends with /
Others are regarded as comment.

index #
1 / SCIN. any comment here
Quench ab T/
qguenching factor is (1-b)/(1 + (1-b)*a*|dE/dx]|) + b
Quench 7.0 0.30 T /
Emin 40.d-6 551d-6 150d-6 /

3/ SCIN comp.# 5
Emin 10d-6 541d-6 10.d-6 / don’t worry the order

Quench 4.5 0.09 4.0 L/ Log type quench formula

2 | for Si
Emin 10d-6 521d-6 10.d-6 [20d-6 0.1/
EminG EminE RecoilE [KEmin EminH

Figure 2: Modifier and ModifyFile

like in Fig. Note that, although we say as if ModifyFile were a file, ModifyFile itself
is not the file name but a variable to contain a path to a file in which modifications are
described,

If the modifier field is absent or 0, no modifier is assumed. The modifier number need
not be consecutive but it’s better to keep it as small as possible to save the memory
(must be < 105 —1). The value for the ModifyFile must be given in epicsfile. The
default of ModifyFile is ’ ’ so that no modifier is assumed. The format of ModifyFile
is similar to epicsfile.

The current possible entry is Quench and Emin. In some case, one may need to
change the medium density for the same medium (say, for Air), so Density could be
an entry candidate. By historical reason, changing density is possible by the notation:

2 bos Air

3 box Air*1.08

4 box Airx0.90
in the config file. Here, 1.08 means 1.08 times higher density than the default given
in the media file. It should be noted, because of the LPM effect, changing the density
dynamically is not an easy task so that this method must be used only if the LPM
effect works very weakly.

Table 4: Related parameters

variable in ‘ value ‘ description

ModifyFile epicsfile D=’"| If the modifier digit is used in the config file,
a file name here is consulted. However, If this
is “blank”, all modifiers are neglected. The file
should contain the number given in the modi-
fier field and some of the variables shown below.
If a modifier number is > the max number in
ModifyFile, error stop will happen.

Quench ModifyFile Coefficients must be given for Tarle, Birks or
Log forrmula (see section for Quenching) . If
this is missing for a modifier number, the same
action is taken as if the modifier were absent.
Emin ModifyFile EminG, EminE, RecoilE must be given. KEmin
and EminH may or may not follow them. If
last two are not given, the same procedure as
AutoEmin = 1 case is used. If this is missing for
a modifier number, the same action is taken as
if the modifier were absent.

4.1 Quenching coefficients

It is assumed that the amount of scintillation light emitted by a heavy ion in a short
dFE

distance, Az, is not proportional to the energy loss (deposit), AE = d—Aw, in the
T

scintillator but is proportional to CtAE where C¢(< 1) is a dE/dx dependent constant.

Birks Before v9.08, the quenching effect is managed by the Birks formula + some
corrections. The original Birks formula gives

1

Cr=——
f 1+a%

(1)

where a is the Birks coefficient. The additional corrections need two more con-
stants, b and c. So, for example, the basic media file (Epics/Data/BaseM /SCIN)
and media file (Epics/Data/Media/SCIN)? contains lines like

Elem rho(g/cm”3) Gas/S01id(1/0) refl.index Birks c
2 1.032 0 1.581 13 9.6 0.5714

where the last three numbers are the coefficients, a, b, c. However, the correction
terms using b and ¢ do not work well and only a has been used in the original
formula to get Cy. In spite of this fact we will keep 3 numbers for the Birks case;
the last two may be any numbers.

Now we may put “B” to express explicitly that these are for the Birks formula:

5The BaseM file is used only when making the Media file. The user may change the quenching
coefficients in the media file after creating it. The data in the BaseM file need not be changed but it
will be better to keep the same value as the Media file.

Elem rho(g/cm”3) Gas/S01id(1/0) refl.index Birks c
2 1.032 0 1.681 13 9.6 0.5714 B

The unit of a is g/cm?/GeV.

Talré A better formula by Talré is now usable (G. Tarlé, S.P . Ahlen and B.G .
Cartwright, Astrophys . J. 230 (1979) 607):

1-0

S ——— 2
1+ (1—b)adE @)

Cr
and the (basic) media file format is (e.g., for a = 8 and b = 0.35)

Elem rho(g/cm”3) Gas/S01id(1/0) refl.index Talre c
2 1.032 0 1.581 8 0.35 T

We need two coefficients, a,b and “T”. The unit of a is the same as the Birks
case, i.e, g/cm?/GeV and b is unitless.

Log Another purely empirical formula is a “Log” type® which needs three coefficients

a,b and c:
dE
z = a%—i-l (3)
Cf _ Z—blog(cz) (4)

The (basic) media file format would be

Elem rho(g/cm”3) Gas/S01id(1/0) refl.index Log quench
2 1.032 0 1.581 4.6 0.09 5.1 L

The three coefficients, a, b, ¢, must be followed by “L”. The unit of a is as before
(g/cm?/GeV) and b and ¢ are unitless.

So far the format is for the (basic) media file and the values there are used as default
for that medium. As mentioned earlier, the modifier digit and ModifyFile can change
these defaults. The format in the ModifyFile is one of

Quench a b ¢ B /
Quench a b T /
Quench a b ¢ L /

Q... must start from the 2nd column.

4.2 User own quenching treatment

If the user wants to use another quenching formula, one solution is to do every thing
in userde of ephook.f. The coding will look like

SCoefficient treatment in v9.08 is different from v9.10 or later so the “Log” formula should not be
used in v9.08.

10

real(8):: dedx, Cf

if (aTrack.p.charge > 1) then
call epgElossRate(dedx) ! get dE/dx (GeV/(g/cm2)
I get Cf from dedx etc
| get effective dE by Cf*Move.dE
! use it instead of Move.dEeff
endif

Caution: If info given to userde is 1, the particle is dying, or already dead because
its energy is < minimum from the birth. In the latter case, unless charge is > 1, dedx
is undefined. In some case, even charge 0 particle (e.g, very low energy photons) may
come there.

4.3 Getting the sum of energy deposit and effective energy deposit

The user can use (in uelev of ephook.f)

call epqEloss(i, dEt, dEeff)
to get true energy deposit (real(4)::dEt) and effective deposit (real(4) ::dEeff) for
a component number i.

Caution: dEeff may be taken to be proportional to emitted light intensity. However,
actual light reaching to sensor could be dependent on the emission position. Such a
factor is not taken into account in this dEeff. The user must do such business in userde
using Move.dEeff and position information, etc

5 Seeing the minimum energies and quenching coefficients

To have a look at the minimum energies and quenching coefficients set by ModifyFile
or AutoEmin together with the associated component, the user may go to Epics/Util
and issue

e ./testCnf4.sh for Emin
e ./testCnf5.sh for quench coef.

The usage will be shown by the command.

6 New user interface

In some applications, the user may want to know information of particle interactions
(what kind of interaction, where it happened etc). This type of interface is available
in Cosmos but not in EPICS. If we add such one, all user must modify the existing
ephook.f. This fact delayed implementation of such interface. Now, from v9.10, the
user could use such interface” while those who don’t need such one can use old programs
without paying attention to, or without being aware of, the new interface at all.

How to do if the user wants to use the interface ?

1. Edit Epics/epics/Zepcondc.h and change the last line to read #define INTINFO

If the user needs to know only the first interaction of the incident particle, this interface is not
needed. See section 8.

11

2. make clean;make in Epics as usual®. This may be done once for all unless the
user resets the line to #undef INTINFO.

3. In the user’s application directory, say, Epics/UserHook/myApps or
in Epics/UserHook/xxx/myApps (see 7. below), issue manageIntInfo.sh.

This command dose two things

e copies Epics/UserHook/epUI.f to the current directory.

e after #include "../main.f" or #include "../../main.f"
in the ephook.f, adds the next lines

#include "Zepcondc.h"
#if defined (INTINFO)
#include "epUI.f"
#endif

4. If the user dose not do anything more, and make clean;make, then the application
will run as if the user did not do manageIntInfo.sh. The overhead by introducing
epULf is completely negligible.

5. If the user wants to do something when some particle interacts, the user must
edit epUL.f.
e The usage is explained in the epULf

e Important: Suppose a photon interacts and this program unit is called, then
if the user dose not give 0 to info, this program will not be called for
later photon interactions until the next event simulation starts. For other
particles, the same is true.

e The position information is the one at the local coordinate of the current
component.

6. For the applications in UserHook/ supplied by v9.09, manageIntInfo.sh has been
done. If the user dose this again, nothing will happen.

7. If the user’s application is located in a different directory structure than shown
above, the equivalent two things as above must be done by the user.

The epGUI subroutine is included in the epUILf. This is prepared to cope with
future demand of new interfaces.

7 New volume shape

See a separate manual.

8 Inquiry and other useful subroutines

Here we list inquiry subroutines which may be needed by the user, irrespectively of old
or new.

8This should be always ok, but if the user has already made the library before changing Zepcondc.h,
the safest way is to delete the library in Epics/1lib/.../ once and remake the library.

12

Table 5: Inquiry subroutines

] subroutine name ‘

description

epqgversion

epqgncp

epgevn

epqinc

epqFirstl

Get version number of Cosmos and EPICS.

Usage:

character(8)::cosv | Comos version (say 7.99)

character(8) ::epiv | EPICS version

call epqversion(cosv, epiv)
Caution: Environmental variable COSMOSTOP and EPIC-
STOP must have relevant values.

Get the total number of components.
Usage:

integer: :ncomp

call epgncp(ncomp)

Get current event number
Usage:
integer::eventn
call epgevn(eventn)
The event number will be updated after uelev is called.

Get the incident particle track information

Usage:

#include "ZepTrack.h"

record/eTrack/ aTrack

call epginc(aTrack)
aTrack.p.code etc are explained in userde or userbd. E.g, the
component number of the incident track is aTrack.cn and its
position is aTrack.pos (local coordinate). To get the world
coordinate, the user must use epl2w (see Table 6)
Caution: If multiple particles are incident, only the first one
is obtained.

Get the first interaction point of the incident particle

Usage:

#include "ZepPos.h"
This is not needed if ZepTrack.h is used for epginc in the
same subroutine.

record/epPos/firstpos

call epqgFirstI(firstpos)
firstpos.x, firstpos.y, firstpos.z are the interaction point in the
world coordinate.
Caution: Except for the electron, the knock-on and elastic col-
lision are not regarded as interaction. A large negative value
(-1000000.0) of firstpos indicates no interaction happened.

13

] subroutine name

|

description

|

epqFirstM

epqFirstP

epqCn2Media

epgmat

Get the media information in which the incident made the first
interaction.
Usage:
#include "Zmedia.h"
record /epmedia/ firstM
call epqFirstM(firstM)
Some of the ingredients:
firstM.A: real(8) ! Average mass number of the media.
firstM.Z: real(8) ! Average charge of the media.
firstM.name: character(8) ! media name.
firstM.colElem: integer
The element # within the media at which the first collision
took place. For e/~/p, this will be 0 if the number of elements
in the media is > 1, and the variables below are undefined.
firstM.colA: integer
Mass number of the nucleus at which the collision took place.
firstM.colZ: integer
Charge number of the nucleus at which the collision took
place.
firatM.colXs: real(8)
The inelastic cross-section (mb) of the target.

Get process name of the first interaction.

Usage:

character(8):: proc

call epqFirstP(proc)
If no interaction happened, proc will be ’’. Hadronic collision
is 'coll’, brems ’brem’, pair creation ’pair’, Compton ’comp’;
more details are seen in Epics/UserHook/epUL..

Get media information of a given component number.

Usage:

#include "Zmedia.h"

integer:: compn ! give some number
record /epmedia/ mediax

compn= ...

call epqCn2Media(compn, mediax)
If compn is wrong, stop will happen. The media name is in
mediax.name (see, epgmat), mediax.Z the average charge of
the media, etc.

Get media name of a given component number.
Usage:
integer:: compn ! give some number
character(8): :name ! If compn is wrong, stop will happen.
compn= ...
call epgmat(compn, mat)
Output mat will be such as Pb, SCIN etc.

14

] subroutine name

|

description

|

epgstruc

epgSubdName

epgmatrhoc

Get component structure (box etc) of a given component number.
Usage:
integer:: compn ! give some number
character(12)::struc ! If compn is wrong, stop will happen.
compn= ...
call epgstruc(compn, struc)
Output struc will be such as box, ciecone etc. If the length
is shorter than actual one, the tail part will be lost.

Get sub-detector name to which a given component number be-
longs.
Usage:
integer: :compn ! give some number
character(16) : :name
If compn dose not belong to a sub-detector, name will be * .
compn= ...
call epgSubdName(compn, name)

Get media name (e.g, Air*1.03) of a given component number.
Usage:
integer:: compn ! give some number
character(20) : :name
Output will be Air*1.0032 etc. Air is equivalent to Air*1.
If compn is wrong, stop will happen.
real(4)::rhoc ! output.
The relative density of the component to the default.
integer::1lc ! output. Length of the name content.
compn= ...
call epgmatrhoc(compn, name, lc, rhoc)

15

] subroutine name

description

epqCount

epLight Unpack
CountDE

epqvolatr

Get digit information for calling userbd and userde of a given

component number.

Usage:

integer: :compn ! give a component number

integer: :countio ! digit for userbd

integer: :countde ! digit for userde

compn= ...

call epqCount(compn, countio, countde)
Wrong compn will result in a stop. Suppose a component
description line like
3box Pbcde/ ...
here “c” is the digit used to call userbd and “de” the one used
to call userde (and routines for light transport). We call the
“c” part countIO (since it is to specify whether userbd is
to be called when a particle enters In or goes Out of a com-
ponent), and the “de“ part countDE (since it is to specify
whether userde is to be called when a particle Deposits En-
ergy in a component).

Decompose countDE (see above). Decomposition may be needed
when it contains information for light generation and transport.
integer(2)::info ! NOT integer
integer: :d ! digit for energy deposit count
integer: :mn ! digit for flle for Light or sensor
integer: :B ! digit for light generation/transport
info = countde ! convert to 2 byte integer
call epLightUnpackCountDE(info, d, mn, B)
The input info is decomposed into d, mn, B. Details will be
explained in the Light Transport section.

Get the volume attribute of a given component number.

Usage:

integer: :compn ! give a component number

integer: :na ! Output. number of attributes obtained.

real(8)::vol(x) ! Output.
x must be > na which is dependent on the volume (say, for
box 3, cyl 2, octagon 4 ...).

compn= ...

call epqgvolatr(n, na, vol)
Example: for a box, vol(1), vol(2), vo(3) will be a,b,c of the
canonical form. If compn is wrong , stop will happen.

16

] subroutine name ‘

description

epqcmpdircos

epqOrig

epqElossRate

Get the direction cosines of a given component number.

Usage:

integer: :compn ! give a component number

real(8)::dir(9) ! Output.

compn= ...

call epqcmpdircos(compn, dir)
The direction cosines of the component, showing how the
canonical form is rotated. Suppose a canonical box surround-
ing the component. The rotation is expressed by the direction
cosines of rotated canonical box’s a, b, c: dir(1:3) are for
a, dir(4:6) for b and dir(7:9) for c. If the component is
not rotated dir(1:9) =(1,0,0, 0,1,0, 0,0,1). If compn is
wrong , stop will happen.

Get the origin coordinate value of a given component number.

Usage:

#include "ZepPos.h"

record /epPos/ orgin

integer: :compn ! give a component number

compn= ...

call epqorg(compn, origin)
The value of orign.x, orign.y, orign.z is the origin of the
component in the world coordinate. That is, the origin of the
component in its canonical form is shifted by this amount. If
compn is wrong , stop will hapen.

Get dE/dx of the current particle
Usage:
real(8)::dedx ! GeV/(g/cm?)
call epgElossRate(dedx)
To be used in userde. See caution in 4.2.

Table 6: Other subroutines

] subroutine name ‘

description

|

epl2w

Convert position in the local coordinate into the world coordinate

Usage:

#include "ZepPos.h"

integer::cn ! input. component number

record /epPos/ posl ! input.
The position posl in the local coordinate of the component
specified by the component number cn.

record /epPos/ posw ! output. world coordinate position

call epl2w(cn, posl, posw)

17

] subroutine name

description

epw2l

epl2wd

epw2ld

Inverse of epl2w

Usage:

#include "ZepPos.h"

integer::cn ! input. component number

record /epPos/ posw ! input. world coordinate position
record /epPos/ posl ! output. local coordinate position
call epw2l(cn, posw, posl)

Convert 3 direction cosines in the local coordinate into the world

coordinate

Usage:

#include "ZepDirec.h"

integer::cn ! input. component number

record /epDirec/ dirl ! input.
Direction cosines dirl in the local coordinate of the compo-
nent specified by the component number cn. dirl=(dirl.x,
dirl.y, dirl.z).

record /epDirec/ dirw ! output. world coord. dir. cos.

call epl2wd(cn, dirl, dirw)

Inverse of epl2wd.
Usage:
#include "ZepDirec.h"
integer::cn ! input. component number
record /epDirec/ dirw ! input.
Direction cosines dirw in the world coordinate.
record /epDirec/ dirl ! output. local coord. dir. cos.
call epw2ld(cn, dirw, dirl)

18

] subroutine name

|

cgetfname

copenf

copenfw

description

Convert special characters in a string to create a new string.
Usage:

character(x):: fin! input

character(y):: fout ! output

fin=’..."

call cgetfname(fin, fout) !
x,y must be some number.
All of % #1 #2 # @ $ in fin are treated as follows.

1) #1 is replaced by the initial seed of the random number (1st
one of the two).

2) #2 is replaced by the initial seed of the random number (2nd
one of the two).

3) # (not followed by 1 nor 2) is replaced by the unix process
number.

4) % is replaced by YYMMDDHHMMSS (year month day hour
minut second of the time).

5) @ is replaced by the hostname (dropping domain name, if any).

6) $ assumes it is followed by an environmental variable, and is
replaced by its value. Three types can be recognizable: for
instance, $USER (not followed by any character), $USER/ (fol-
lowed by /) $(USER) (always ok). In either case, it may be
preceded by any character. (This one is usable from Cos-
mos7.59).

Open an existing sequential ascii file. Special characters in the file

name is treated by cgetfname.

Usage:

integer: :ionum ! input

integer::icon ! output

call copenf(ionum, filepath, icon)
where filepath is a character string defined by, say, charac-
ter(60)::filepath and contains a string showing the path to an
existing file. ionum is the logical file unit number. icon =0:
ok iocn !=0: could not be opened.

Open an sequential ascii file for writing. It may not exist. Special
character treatment is the same as copenf.

Usage:

integer: :ionum ! input

integer::icon ! output

call copenfw(ionum, filepath, icon) ! icon =0: ok. else ng

19

] subroutine name

|

description

rndc

Others

Uniform random number in (0,1).

Usage:

real(8)::u! output (0 < u < 1.0)

call rndc(u) !
The same random number generator as used in Cos-
mos/EPICS. 0 and 1.0 are exclueded.
There are two other generators and the third one is not used
in Cosmos/EPICS. See for details in Cosmos/KKlib/rnd.f

Other random number generators are available. See the following:

(Those in Cosmos/KXKlib)

kgauss.f : Gaussina random number.

kbetar.f : Random numbers with density of the beta function

kbinom.f: Binomial random number.

kcosn.f: cos and sin of uniform random number in (0, 27).

knbino.f: Negative binomial random number.

kpoisn.f Poisson random number.

kampLin.f Random variable with density (a + bx)dx

ksampPEang.f: Random variable with density (1—z?%)/(a—z)*dx.
Related to electron angle at photo-electric effect.

ksampPw.f: Random variable from a function consisting of many
power functions.

ksampRSA.f: Random sampling of cos 6 from (1 + cos? #)d cos 6

ksbwig.f: Random sampling from the Breight-Wigner distribution.

ksgamd.f: Sampling from the gamma distribution,
(z/a)* exp(—z/a)/T (s + 1)d(z/a)
ksplandau.f: Sampling from a psudo-Landu distribution:

exp(—(y + exp(—y))/2)dy where y = (z —b)/c.

csampAF.f90: (in Cosmos/Module). Sampling from an arbitrary
function specified by a numerical table. (see also ksampAF.f
in Cosmos/KXKlib/)

Those in Epics/prog/KKlib:

ksbeta.f: ksmpintbetaf: similar to kbetar.f

ksx2.f: Random sampling from the y? distribution.

9 Other updates and input parameters

e Use of environmenal variables. As described in Table 6, for the file name,
we can use environmental variables.

e Multiple scattering treatment. The parameter Molier in the epicsfile now
takes integer values rather than “t” or “f”, although the user can still use t or f;
they are mapped to 0 or 1 by

f— 0: This specifies the Gaussian multiple scattering.

t— 1: This specifies the Moliere multiple scattering.

The new possible value is 2. If 2 is given to Molier, Moliere’s multiple scat-
tering formula is used, but it’s implementation is completely different and more

20

rigorous than Molier=1. It also includes Bethe’s prescription? to overcome the
small angle approximation assumed in original Moliere’s theory. (Goudsmit and
Saunderson’s scattering formula!® which does not use small angle approximation
is well reflected in Bethe’s prescription). However, results by Molier=2 are (sta-
tistically) completely the same as Molier=1 for cascade showers. The difference
appears in the cpu time which is 1.6 times longer for Molier=2 than Molier=1.
Therefore, the user may use the default, Molier=1.

e Automatic disk space allocation. In older versions than 9.08, if the user
inputs a large number of particles as the incident (using “+primary” file notation),
the particle stack area could overflow during particle tracking; the user had to
specify a disk file in the +primary file.

In case of light tracking, the number of light photons becomes huge. Allocating
more memory for the stack is not a good solution.

Now, if the stack area lacks, EPICS automatically creates “scratch disk file” and
the unix system deletes it at the end of job (even if the job ab-ends).

The relevant parameters could be written in sepicsfile

StackDiskFile ’scratch’ /

The default “scratch” does not mean the file name but it is a scratch file
created by the system with some system-determined file name; the path to the
file is fixed by the system;ifort will create it in /tmp/$USER/ with the name
something like fortVSXGZg. The file will be deleted at end of job (even if
abnormal end).

Caution:

If a large number of jobs is submitted in a distributed system (e.g, pc clusters),
depending on the system, many scratch files could be created in a non-local
disk (say, in the NF'S mounted home) to which network access is needed, then
the jobs will almost kill the whole system due to overwhelming net work access.
In such a case, the user must specify the path explicitly which does not require
the network access. e.g, /tmp/$USER/stackdisk#. It should be noted, the
user given file will be deleted only if the job ends normally, otherwise the user
must delete it.

For the scratch files, logical device number, 13 and 16, will be used in default.

e In Cosmos, some awkward behaviors in low energy interaction models were ab-
sorbed.

10 Interaction models

phits must be used with jam or nucrin or dpmjet3

11 Warnings

e Don’t use InputP=’fix’ which requires Xinp etc. Instead, use InputP="u+z’ etc
with Xrange=... etc.

9Phys. Rev. Vol.15 (1953) 1256.
1Phys. Rev. Vol.57(1940)24, 58(1940)36.

21

e Don’t put the incident exactly on the boundary of two consecutive components.
EPICS will be buffaloed when judging the component the particle belongs to.

12 Light transportation

22

